Звездный синтез

Хойл, который презирал праздные размышления, взялся за проверку
своей теории. Он был в восторге от идеи, что элементы Вселенной
испеклись не в топке Большого Взрыва, как считал Гамов, а в звезд-
ном ядре. Если около сотни химических элементов возникло в ядре
звезд, то потребность в существовании Большого Взрыва вообще
отпадала.

В ряде работ, содержащих плодотворные идеи и опубликован-
ных в 1940-е - 1950-е годы, Хойл и его коллеги описали в подроб-
ностях, как ядерные реакции в ядре звезд, а не в пламени Большого
Взрыва присоединяли все больше и больше протонов и нейтронов к
ядрам водорода и гелия до тех пор, пока не были созданы все тяжелые
элементы, во всяком случае до железа. (Они решили загадку, как соз-
дать элементы с массовым числом выше 5, которая поставила в тупик
Гамова. В гениальном озарении Хойл понял, что если существовала
ранее незамеченная неустойчивая форма углерода, состоящая из
трех ядер гелия, то она могла бы просуществовать достаточно долго,
чтобы послужить «мостом» для создания элементов высшего по-
рядка. В ядрах звезд эта новая неустойчивая форма углерода могла
продержаться достаточно долго для того, чтобы можно было путем
последовательного добавления все большего количества нейтронов
и протонов создать элементы с массовым числом выше 5 и 8. Когда


эта неустойчивая форма углерода действительно была обнаружена,
это открытие блестяще продемонстрировало, что нуклеосинтез про-
исходит в ядрах звезд, а не при Большом Взрыве. Хойл даже создал
большую компьютерную программу, определяющую почти с первых
шагов относительное содержание элементов во Вселенной.)

Но даже сильного жара внутри звезд недостаточно, чтобы «ис
печь» такие элементы, как медь, никель, цинк и уран. (Извлекать
энергию при слиянии элементов тяжелее железа чрезвычайно слож-
но в силу различных причин, в том числе отталкивания протонов в
ядре и нехватки связующей энергии.) Для тяжелых элементов пона-
добилась бы печка побольше — взрыв массивных, или сверхновых
звезд. При грандиозном взрыве гигантской звезды температура ее
предсмертной агонии может достигать триллионов градусов, и эта
энергия оказывается достаточной для «приготовления» элементов
тяжелее железа. По сути, это означает, что большинство элементов
тяжелее железа — результат взрыва сверхновых звезд.

В1957годуХойлвсоавторстве сМаргарети Джефри Бербиджами
и Уильямом Фаулером опубликовал, возможно наиболее значитель-
ную, работу, где в подробностях были представлены все этапы,
необходимые для создания элементов во Вселенной и для опреде-
ления их распространенности. Аргументы авторов были так точны,
вески и убедительны, что даже Гамову пришлось признать, что Хойл
представил убедительнейшую картину нуклеосинтеза. Гамов, в при-
сущей ему манере, даже сочинил следующий экспромт в библейском
стиле:

В самом начале, когда Бог создавал элементы, волнуясь при
счете, Он не назвал массу пять, а потому, естественно, не могли
образоваться тяжелые элементы. Бог был очень разочарован
и поначалу хотел снова взорвать Вселенную, а затем начать все
сначала. Но это было бы слишком просто. Тогда всемогущий Бог
решил исправить свою ошибку самым невероятным образом.
И сказал Бог: Да будет Хойл. И появился Хойл. И посмотрел Бог
на Хойла... И велел ему сотворить тяжелые элементы так, как ему
вздумается. И Хойл решил сотворить тяжелые элементы в ядрах
звезд и распространять их по Вселенной с помощью взрывов
сверхновых.


Аргументы против теории
стационарной Вселенной

Однако в течение десятилетий во всех направлениях науки накапли-
валось все больше доказательств, опровергающих «теорию стацио-
нарной Вселенной». Хойл обнаружил, что его борьба обречена на
верный проигрыш. По его теории, поскольку Вселенная не эволюци-
онировала, а постоянно создавала новую материю, ранняя Вселенная
должна была выглядеть очень похожей на Вселенную наших дней.
Видимые нам сегодня галактики тоже должны были походить на те
галактики, что существовали миллиарды лет назад. Теория стацио-
нарной Вселенной могла быть опровергнута, если бы были обнару-
жены признаки значительных эволюционных изменений Вселенной
на протяжении миллиардов лет.

В 1960-е годы в космическом пространстве обнаружили загадоч-
ные источники невероятной энергии, названные «квазарами», или
квазизвездными объектами. (Название было таким броским, что
позднее его использовали в качестве марки телевизора.) Квазары
генерировали невероятные количества энергии и характеризовались
красным смещением огромной величины, что означало, что они на-
ходятся на расстоянии миллиардов световых лет от нас, а также что
они освещали Вселенную еще в раннем ее детстве (сегодня астро-
номы считают, что квазары — это гигантские молодые галактики,
ведомые энергией огромных черных дыр). У нас нет доказательства
существования каких-либо квазаров сегодня, хотя согласно теории
стационарной Вселенной они должны существовать. За миллиарды
лет они исчезли.

В теории Хойла крылась еще одна проблема. Ученые доказали, что
во Вселенной слишком много гелия, чтобы это вписывалось в теорию
стационарной Вселенной. Гелий, известный как газ, используемый
для надувания воздушных шаров и небольших дирижаблей, в дей-
ствительности довольно редок на Земле, но он является вторым по
относительному содержанию элементом во Вселенной после водо-
рода. Вообще, он настолько редок, что впервые был обнаружен не на
Земле, а на Солнце. (В 1868 году ученые анализировали свет Солнца,
проходящий через призму. Преломленный луч света распадался на
обычную радугу цветов и спектральных линий, но ученые обнаружи-


ли нечеткие спектральные линии, вызванные загадочным элементом,
никогда не виденным ранее. Они ошибочно посчитали, что это ме-
талл, а названия металлов (в английской терминологии) оканчивают-
ся на Лит, например lithium (литий), uranium (уран). Они дали этому
загадочному металлу название helium (гелий) от греческого названия
Солнца, «Helios». Когда же в 1895 году гелий был найден на Земле в
залежах урана, ученые с большим смущением обнаружили, что это
газ, а не металл. Так название гелия, впервые открытого на Солнце,
изначально оказалось неправильным.)

Если первичный гелий в основной своей массе рождался в звезд-
ных ядрах, как считал Хойл, он должен был быть довольно редким и
находиться в недрах звезд. Но астрономические данные показали,
что относительное содержание гелия во Вселенной довольно высоко
и составляет 25 % от всей массы атомов во Вселенной. Было обнару-
жено, что гелий однородно распространен по всей Вселенной (как и
предполагал Гамов).

Сегодня мы знаем, что и в теории Гамова, и в теории Хойла были
зерна истины относительно нуклеосинтеза. Гамов считал, что все хи-
мические элементы были побочным результатом, или золой, Большого
Взрыва. Но его теорию убили провалы на пяти и восьми частицах.
Хойл же считал, что смог зачеркнуть теорию Большого Взрыва, по-
казав, что в звездах «пекутся» все элементы — к Большому Взрыву
прибегать нет никакой потребности. Но его теории не удалось объ-
яснить огромный процент гелия, существующий, как нам известно,
во Вселенной.

По существу, Гамов и Хойл дали нам взаимодополняющую картину
нуклеосинтеза. Очень легкие элементы с массой до 5 и 8 действитель-
но возникли в результате Большого Взрыва, как и предполагал Гамов.
Сегодня в результате последних физических открытий стало извест-
но, что во время Большого Взрыва действительно возникла большая
часть дейтерия, гелия-3, гелия-4 и лития-7, которые присутствуют в
природе. Но более тяжелые элементы были, в основном, созданы в
ядрах звезд, как утверждал Хойл. Если мы прибавим элементы тяже-
лее железа (медь, цинк и золото), которые возникли из обжигающего
жара сверхновых звезд, то мы получим завершенную картину, объяс-
няющую соотношение всех элементов во Вселенной. (Любая теория,
соперничающая с нынешними взглядами космологов, столкнулась бы


с задачей немыслимой сложности: объяснить возникновение более
сотни элементов во Вселенной и множества их изотопов.)