Записать неравенства Гельдера и Минковского.
Пусть и – число, сопряжённое к нему ( ). Тогда для любых функций и , заданных на , для которых существуют интегралы
и
имеет место неравенство Гельдера
Пусть и пусть функции x(t) и y(t) таковы, что существуют и конечны интегралы , тогда справедливо неравенство Минковского
17. Определение пространства Lp[a,b].
Пространством называется нормированное векторное пространство, элементами которого являются классы эквивалентных между собой интегрируемых по Лебегу функций со степенью p и нормой
Сходимость в пространстве называется сходимостью в среднем со степенью p.
Определение и примеры открытых и замкнутых множеств в нормированных векторных пространствах.