Автокорреляция 1-го порядка и критерий Дарбина-Уотсона.
В классической регрессионной модели выполнение третьего условия Гаусса-Маркова (Соv(εt εS) = 0,при t ≠ s) гарантирует некоррелированность значений случайных членов в различные моменты наблюдений и это позволяет получить несмещенные МНК-оценки с минимальной дисперсией. Зависимость значений случайных членов в различные моменты времени называется автокорреляцией (сериальной корреляцией).
Формальной причиной автокорреляции в регрессионных моделях является нарушение третьего условия теоремы Гаусса-Маркова, действительной же причиной может быть: неправильная спецификация переменных (пропуск важной объясняющей переменной); использование ошибочной функциональной зависимости, а иногда и характер наблюдений (например, временные ряды).
Для проверки на автокорреляцию используется ряд критериев, из которых наиболее широкое применение получил критерий Дарбина-Уотсона:
Критерий DW связан с выборочным коэффициентом корреляции между еt и еt-1, соотношением: DW≈2(1-r),
Если автокорреляция отсутствует, то DW ≈ 2, при наличии положительной автокорреляции DW<2, если автокорреляция отрицательна, DW>2. И поскольку коэффициент корреляции принимает значения -1 ≤ r ≤ 1, то 0≤ DW ≤ 4. Полученное для данной регрессии значение статистики сравнивается с верхней и нижней границами ее критического значения dL ≤ dкрит ≤dU. Границы dU и dL выбираются из таблиц по числу наблюдений n, числу регрессоров k и уровню значимости α. При этом возможны следующие случаи:
1.Наличие положительной автокорреляции: DW<dL.
2.Наличие отрицательной автокорреляции: DW >4-dL.
3.Автокорреляция отсутствует: dU ≤ DW≤ 4-dU.
4.Зоны неопределенности: dL<DW< dU или 4- dU <DW<4-dL.
Этот тест подробно исследован и реализован во всех статистических пакетах, STATGRAPHICS, STATISTICA и других.
Значение статистики DW | Вывод |
4 – dl < DW < 4 | Гипотеза о независимости остатков отвергается, есть отрицательная корреляция |
4 – du < DW < 4 – dl | Неопределенность |
2 < DW < 4 – du | Принимается гипотеза о независимости остатков |
du < DW < 2 | Принимается гипотеза о независимости остатков |
dl < DW <du | Неопределенность |
0 < DW <dl | Гипотеза о независимости остатков отвергается, есть положительная корреляция |