Свойства дорожно-строительных материалов

Дорожно-строительные материалы в период эксплуатации в сооружении (дорожная одежда, искусственные сооружения и другие) подвергаются воздействию внешних механических сил и физико-химических факторов окружающей среды. К внешним механическим воздействиям относят ударные и статические нагрузки транспортных средств, механическую работу воды, ветра и другие. К физико-химическим факторам относят колебания температуры воздуха, инсоляцию, атмос-ферные осадки, поверхностные и грунтовые воды.
В зависимости от того, в каком элементе дорожной конструкции работают материалы, они по-разному подвергаются воздействию внешних сил и физико-химическим процессам окружающей среды. Так, атмосферные воды, попадая в отдельные слои дорожной одежды, могут нарушать структурные связи в материале, растворять и вымывать некоторые вещества. Минерализованные воды постепенно разрушают такие материалы, как грунтоцемент, цементобетон и др. Колебания температуры периодически изменяют внутренние напряжения в материалах, а также изменяют их состояние, что приводит к ослаблению структурных связей, появлению микротрещин, сдвигов под воздействием транспортных средств. С течением времени, под влиянием сложного комплекса механических, Физических и химических факторов, строительные материалы в дорожных конструкциях постепенно разрушаются. Интенсивность разрушения определяется особенностями внешних воздействий, конструкцией дорожной одежды и свойствами материалов - объективными признаками, проявляющимися при производстве, применении и работе материалов в конструкциях. Пригодность материалов для конкретных условий определяют по их свойствам. Свойства материалов многообразны, что обусловлено, главным образом, их вещественным составом.

1.3.1.1. Физические свойства

Физические свойства характеризуют физическое состояние материала, а также определяют его отношение к физическим процессам окружающей среды. При этом физические процессы в материале не изменяют строение его молекул. Обычно к таким свойствам относят истинную плотность (удельный вес), среднюю плотность (объемную массу), насыпную плотность (насыпная масса), пористость, пустотность, влажность, водо-поглощение, водонасыщение, усадку, огнеупорность, огнестойкость, светостойкость.
Истинная плотность - масса вещества материала в единице объема (без пор и пустот). Истинную плотность выражают отношением массы материала в сухом состоянии к объему материала в абсолютно плотном состоянии. Истинную плотность выражают в кг/м3. Для определения истинной плотности хрупких материалов, обладающих пористостью, их тонко размельчают, получая частицы размером менее 0,25 мм. Истинная плотность основных дорожно-строительных материалов колеблется от 2500 до 3300 кг/м3.
Средняя плотность (объемная масса) - масса единицы объема материала в естественном состоянии (с порами, пустотами, микротрещинами и т.д.). Средняя плотность строительных материалов меньше истинной плотности. Чем меньше пористость материала, тем ближе значение средней плотности к истинной плотности.
Насыпная плотность (насыпная масса) - масса единицы объема материала в рыхлом состоянии. Насыпная плотность включает, кроме пор, пустот и трещин в зернах материала, пустоты между зернами. Чем больше средняя плотность материала, тем меньше его пористость и лучше он проводит тепло, звук и т.д.
Пористость характеризует количество пор и микротрещин в единице объема материала. Пористость в значительной мере обуславливает физические, механические и другие свойства материалов. Чем больше пористость, тем меньше прочность и теплопроводность, больше водо- и газопроницаемость.
Пустотность - характеризует объем пустот между зернами рыхлого материала.
Влажность - содержание воды в единице объема или массы в процентах. Природная влажность материала зависит от его гигрос-копичности, т.е. способности материала поглощать водяной пар из влажного воздуха за счет адсорбации пара на внутренней поверхности пор и капилляров. Чем больше внутренняя поверхность материала, тем больше гигроскопичность, а следовательно, и природная влажность. Для древесины она - 12... 18 %, для стеновых каменных материалов - 4...7 % по массе.


Водопоглощение - количество воды, которое может поглотить погруженный в воду материал, а затем удержать его молекулярными и капиллярными силами при атмосферном давлении.
Средняя плотность (объемная масса) материала одного и того же состава зависит от влажности и пористости материала (рис. 6.1.1). С увеличением пористости, а следовательно и влажности, средняя плотность увеличивается.
Водонасыщение определяется количеством воды, которое может поглотить материал при вакууме или повышенном давлении. В этом случае из открытых пор вытесняется воздух, вследствие чего материал насыщается водой больше, чем при атмосферном давлении. Водопоглощение и водонасыщение изменяются в пределах: у гранита от 0,02 до 0,7, у асфальтобетона - от 2 до 5, у кирпича - от 8 до 15 %.
Усадка - изменение размеров материала при его высыхании.
Набухание - увеличение объема материала при насыщении его водой.
Многократное высыхание и увлажнение материала ускоряет его разрушение.
Водонепроницаемость - способность материала не пропускать воду. Водонепроницаемость тесно связана с естественной влажностью материала, водопоглощением и водонасыщением.
Теплопроводность - способность материала передавать через свою толщу тепловой поток, возникший вследствие разности температур на поверхностях, ограничивающих материал. Коэффициент теплопроводности колеблется от 0,06 (минеральная вата) до 58 (сталь), для кирпича он равен 0,82, для бетона - 1,28...1,55, для гранита - 2,92.

1.3.1.2. Механические свойства

Механические свойства - способность материала сопротивляться деформированию и разрушению под действием напряжений, возникающих в результате приложения внешних сил.
Нагрузки вызывают в материалах нормальные (растягивающие, сжимающие) и касательные напряжения, обуславливающие процессы деформирования материала. К основным показателям, характеризующим механические свойства, относят: прочность, упругость, пластичность, хрупкость, ползучесть.
Прочность - важнейшее свойство материала, в большинстве случаев, определяет возможность его использования в строительной конструкции. Показатели прочности в значительной степени являются условными. Они зависят от размера и формы образца, скорости его нагружения и других факторов. Поэтому методика определения прочности строительных ма-териалов строго регламентируется нормативно-техническими документами. Прочность материала измеряется мегапаскалями (МПа).
Наиболее прочными являются металлы, например, сталь (150...500 МПа), прочность гранита при сжатии - 120...150 МПа, при растяжении - менее 10 МПа. Прочность бетона при сжатии изменяется от 1 до 100 МПа, а при растяжении их прочность в 10...15 раз меньше. Прочность асфальтобетонов при сжатии - 5...7 МПа (температура при испытании - 2О...25°С).
Упругость выражается в восстановлении первоначальной формы и объема образца после прекращения действия внешних сил.
Вязкость - свойство твердых тел под воздействием внешних сил необратимо поглощать механическую энергию при пластической деформации. Абсолютно упругих и абсолютно вязких материалов нет, все дорожно-строительные материалы обладают в той или иной степени упругостью и вязкостью.
Пластичность - способность материала необратимо деформироваться под влиянием действующих на него усилий без разрыва сплошности (образования трещин).
Хрупкость - свойства материалов под влиянием внешних сил разрушаться, не давая остаточных пластических деформаций. Хрупкость противоположна пластичности. Хрупкость и пластичность материалов зависят от температуры и режима нагружения. Например, битумы хрупки при пониженной температуре и быстро нарастающей нагрузке, пластичны при медленно действующей нагрузке и повышенной температуре. Хрупкие материалы плохо сопротивляются напряжению, динамическим и повторным нагрузкам.
Ползучесть - способность материалов длительно деформироваться под действием постоянной нагрузки. Ползучесть материалов возрастает с уменьшением их вязкости, поэтому большей ползучестью обладают вязкие пластичные материалы (например, асфальтобетон) и меньшей - хрупкие, упругие материалы (например, цементобетон).

1.3.1.3. Химические свойства

Химические свойства материала определяют его способность вступать в химические взаимодействия с веществами среды, в которой он находится, при этом появляются новые вещества. К химическим свойствам можно отнести: растворимость, коррозийную стойкость, атмосферостойкость, твердение, адгезию и др.
Химические свойства учитывают при оценке пригодности материала для тех или иных целей в строительстве.
Растворимость - способность образовывать истинные растворы в результате взаимодействия материала с водой или с Другими растворителями. Строительные материалы, в большинстве случаев, должны быть нерастворимы в условиях их эксплуатации.
Коррозийная стойкость - свойства материала не разрушаться в агрессивных средах. Наиболее стойкими по отношению к агрессивным средам являются керамические материалы. Неустойчивы в кислой среде известняки, доломиты, древесина, портландцементы; к щелочной среде - древесина, битумы.
Атмосферостойкость - свойство материала не разрушаться под воздействием климатических условий. С атмосферостойкостью материала часто связана его склонность к старению вследствие протекания в нем физико-химических процессов и ухудшения свойств. Старение характерно для битумов, асфальтобетонов.
Твердение - свойство материалов затвердевать в результате химических и физико-химических процессов и приобретать ряд новых свойств - сопротивляемость различным по виду и характеру нагрузкам, агрессивным воздействиям внешней среды. Твердение обычно оценивают показателями прочности и их изменением во времени.
Адгезия - свойство одного материала прилипать к поверхности другого. Измеряют адгезию прочностью сцепления при отрыве одного из них от другого. Адгезия имеет важное значение в технологии изготовления материалов и конструкций.

1.3.1.5. Конструкционные свойства

Они обуславливают возможность создания из материала конструкций с заданными механическими свойствами. К этой группе относят твердость, истираемость, износ и т.д.
Твердость - способность материала сопротивляться проникновению в него более твердого материала. От твердости зависит, в частности, истираемость поверхности слоев дорожных покрытий.
Истираемость - способность материала уменьшаться в массе и объеме под действием истирающих усилий. Истираемость определяют на стандартных машинах, вычисляя массу истертого образца к его площади (г/см2). Истираемость имеет большое значение для строительных материалов, используемых в дорожных покрытиях.
Износ - свойства материала сопротивляться одновременному воздействию истирания и ударов. Износ определяют на образцах, которые испытывают во вращающихся барабанах со стальными шарами. Показатель износа - потеря массы образца (%) в процессе испытания.
Коэффициент конструктивного качества (удельная прочность) материала представляет собой отношение прочности (МПа) к средней плотности. Лучшие конструктивные материалы имеют высокую прочность при малой и средней плотности, что способствует созданию легких конструкций. У сплавов из алюминия коэффициент конструктивного качества превышает 250, бетонов - 12...25, кирпича - 5...6.

1.3.1.6. Технологические свойства

Они характеризуют поведение материалов при технологических процессах, их обработке и переработке (например, буримость, дробимость горных скальных пород; формуемость, слеживаемость, нерасслаиваемость бетонных смесей; вязкость жидкообразных минералов и смесей, твердение, адгезия и др.). По технологическим свойствам судят о возможности переработки и получения доброкачественной продукции из исходных материалов при принятой технологии и имеющемся техническом оборудовании.
Очень часто не представляется возможным определить ту или иную характеристику материала, необходимую для расчетов в технологических и эксплуатационных процессах, точными методами физики, механики и химии. Поэтому в практике используют условные показатели, которые определяют приближенными методами.
Например, вязкость битумов трудно измерить строгими физическими методами, поэтому предложено вязкость вязких битумов определять путем пенетрации (глубина погружения стандартной иглы в битум при температуре 25°С). Вязкость жидких битумов и дегтей определяют с помощью стандартного вискозиметра по времени истечения вяжущего че-рез калиброванное отверстие 5 мм при 600С.
Удобоукладываемость бетонных смесей - скорость переформования в секундах стандартного конуса из бетонной смеси в равновеликий цилиндр.
Формуемость - свойство смесей, составленных из различных компонентов, приобретать заданную форму при минимальных затратах средств.
Нерасслаиваемость - свойство смеси сохранять неоднородность при транспортировании и формовании.
Названные и многие другие свойства оцениваются количественно условными показателями, несогласующимися с принятой международной системой единиц. Поэтому эти показатели в разных странах неодинаковы, в большинстве случаев они нормированы в пределах одной страны, а иногда - в пределах отрасли.

1.3.1.7. Эксплуатационные свойства

Эксплуатационные свойства обуславливают работу материала в элементах дорожных конструкций на протяжении определенного отрезка времени. К этим свойствам относят долговечность, выносливость, морозостойкость и др.
Долговечность обусловлена способностью материала сопротивляться комплексному воздействию механических нагрузок, изменению температуры и влажности, действию растворов солей и др. Критерии долговечности материала комплексны, они зависят от его физических, механических и химических свойств.
Выносливость - способность материала многократно сопротивляться прилагаемым механическим воздействиям, которые ускоряют разрушение строительных материалов, вследствие чего ухудшается их долговечность. Выносливость обычно измеряется количеством нагружений, которое выдержал материал до разрушения.
С долговечностью материалов связывают выносливость. Долговечность материалов также нормируется. Например, для железобетонных конструкций предусмотрены три степени долговечности: I - соответствует сроку службы не менее 100 лет; II - 50 лет; III - 20 лет. Часто долговечность материала характеризуется морозостойкостью.
Морозостойкость - способность материала при попеременном замораживании и оттаивании не проявлять заметных признаков разрушения. Более интенсивно проявляется воздействие переменных температур на водонасыщенные каменные материалы. В этом случае вода, находящаяся в порах и микротрещинах, замерзая при понижении температуры, переходит в твердое состояние и увеличивается в объеме примерно на 10 %. Возникающее давление льда при многократном по-вторении замораживания-оттаивания постепенно разрушает материал.
В зависимости от климатических условий, в которых будет работать материал, к нему предъявляют различные требования по показателю морозостойкости, определяемой количеством циклов попеременного замораживания и оттаивания до разрушения материала. Часто коэффициент морозостойкости определяют как отношение показателя прочности материала в водонасыщенном состоянии после испытания на морозостойкость к показателю прочности до испытания.

1.3.2. Природные каменные материалы

Природные каменные материалы, являясь продуктом механической переработки горных пород, отличаются от последних формой и размерами, а также состоянием поверхности раскола отдельностей. Поэтому, их свойства зависят от состава исходной горной породы и ее состояния (трещиностойкости, степени выветривания и др.). Природные каменные материалы получают из скальных и обломочных горных пород, в соответствии с ГОСТ 8267-93.
Скальные горные породы с жесткими структурными связями обладают достаточно высокой прочностью и залегают в земной коре в виде массивов или трещиноватых слоев.
Обломочные горные породы - рыхлые (сыпучие), состоят из обломков скальных горных пород без прочных связей между ними и залегают в виде скоплений.
В зависимости от назначения и условий, в которых будет работать материал, применяют дробленые материалы (щебень, высевки), а также колотые (бутовый камень, шашку для мощения и др.).
К природным обломочным горным породам относят валунный камень, гравий и песок, которые уже в естественном виде могут быть использованы в строительстве.

Валунный камень – грубокатанные, преимущественно округлой формы, обломки скальных пород размером более 100 мм. Валуны размером до 250 мм называют сырцом, так как их можно применять для дорожных работ (например, мощения) без дополнительной обработки. Более крупные валуны используют для получения шашки, щебня.
Галька представляет собой окатанные водой обломки горных пород размером от 100 до 70 (40) мм. Обладает теми же свойствами, что и мелкий валунный камень. Применяется для устройства оснований, дренажей, но чаще измельчается и используется как щебень.
Гравий – рыхлая горная окатанная порода размером частиц от 5(3) до 70 мм. Применяется для устройства гравийных оснований и покрытий, дренажных сооружений, в качестве крупного заполнителя в цементобетоне.
Песок – рыхлая зернистая порода, образованная в результате естественного разрушения горных пород, крупностью зерен до 5(3) мм. В дорожном строительстве используют песок природный и дробленый, получаемый путем дробления горных пород.
Песок применяют для устройства подстилающих слоев дорожной одежды, приготовления строительных растворов, цементо- и асфальтобетонов, для устройства дренажей. Для улучшения качества мелкозернистый песок обогащают добавками искусственного (дробленого) песка (крупностью менее 5 мм) из невыветренных изверженных и метаморфических пород прочностью более 80 МПа, а из осадочных - прочностью более 40 МПа.
Дресва - промежуточный продукт выветривания скальных горных пород, оставшийся на месте образования и сохранивший камневидное состояние. Дресва, в зависимости от исходной горной породы и стадии выветренности, может применяться для устройства различных слоев одежды на дорогах местного значения.
Щебень для дорожного строительства по зерновому составу делят по крупности на фракции: более 120 мм - гигантский; 70... 120 мм - очень крупный; 40... 70 мм - крупный; 25.. .40 мм - нормальный; 15... 25 мм - мелкий; 10... 15 мм - клинец; 3 (5)... 10 мм - каменная мелочь; < 3 (5) мм - высевки.
Качество щебня, т.е. степень соответствия показателей его признаков своему проектируемому назначению определяют на месте его производства (в карьере) и на месте его потребления (на строительном объекте) путем изучения внешних признаков и испытания отобранных проб. При этом определяют петрографические признаки и однородность горной породы, из которой получен щебень: крупность, зерновой состав, форму зерен; шероховатость поверхности; количество и качество примесей (глинистых, органических и др.); количество смятых (раздробленных) зерен; физические и механические свойства.
Физические свойства щебня оценивают по средней и насыпной плотностям, пустотности, влажности, водопоглощению.
Механические свойства щебня оценивают, прежде всего, по дробимости, износу, а также по морозостойкости. Определение качества щебня по прочности при сжатии исходной горной породы является приближенным, так как показатель прочности зависит не только от качества исходной горной породы, но и от размеров, формы и других признаков щебня. Поэтому в настоящее время прочность щебня оценивают косвенно по показателю дробимости. Марку щебня по дробимости в цилиндре оценивают по потере в массе после приложения нагрузки.

 

1.3.3. Минеральные вяжущие материалы

Минеральные вяжущие материалы представляют собой обычно порошкообразные вещества, которые после затворения водой способны постепенно переходить из пастообразного состояния в твердое, приобретая свойства камня.
Минеральные вяжущие по характеру твердения делят на две группы:
воздушного твердения, обладающие способностью после затворения водой твердеть в сухой среде (воздушная известь, гипсовые и магнезитовые вяжущие, жидкое стекло);
водного твердения (или гидравлические вяжущие материалы), после затворения их водой твердеющие на воздухе и в воде, причем во влажной среде вяжущие приобретают большую прочность. Представителями этой группы являются цементы.
Гидравлическая известь и романцемент по составу и особенностям процессов твердения занимают как бы промежуточное место между воздушными и гидравлическими вяжущими: после затворения водой, начав твердеть на воздухе, они продолжают твердеть как на воздухе, так и во влажной среде. При дальнейшем твердении во влажной среде они при-обретают большую прочность.
Воздушную известь получают в результате обжига до возможно полного разложения чистых или доломитизированных известняков или мела, содержащих глинистого вещества не более 6... 8 %. Полученную таким способом известь СаО в виде кусков белого или сероватого цвета называют негашеной (комковой или кипелкой).
В дорожном строительстве известь используют для укрепления грунтов, а также в качестве активатора при приготовлении асфальтобетонных смесей.
Портландцемент представляет собой гидравлическое вяжущее, получаемое тонким помолом цементного клинкера, минеральных добавок и природного гипса (1,5...3,5 % в пересчете на SO3). Цементный клинкер получают путем обжига до спекания природных мергелей определенного химического состава или искусственных смесей известняка с глиной (до-менными шлаками), подобранных в соответствии с требуемым химическим составом. Обычно клинкер имеет следующий химический состав: СаО - 63...67 %; АlO3 - 4...7 %; 2SiO2 -20...24%; Fe2O3 -2...6%; MgО, SО3 и др. - 1,5...3%.
Свойства портландцемента зависят от его минералогического состава, наличия добавок, а также тонкости помола клинкера. По этим признакам определяют вид портландцемента (алитовый, белитовый, быстротвердеющий и так далее).
Тонкость помола цемента характеризуют массой порошка, прошедшего сито № 0,08 (не менее 85 %), и удельной поверхностью зерен, содержащихся в единице массы цемента. Удельная поверхность обычных портландцементов 2000...3000, быстротвердеющих 3500...5000 см2/г
Плотность портландцемента составляет - 900... 1300 кг/м3. При расчете вместимости складов принимают насыпную плотность портландцемента - 1200, а при его дозировании для приготовления бетона - 1300 кг/м3.
Активность - способность затвердевать при затворении водой, превращаясь в прочное камневидное тело.
Активность и марку цемента характеризуют показателем прочности при изгибе образцов - балочек и их половинок при сжатии в возрасте 28 суток.
Предел прочности при изгибе определяют на балочках размером 40x40x160 мм, изготовленных из раствора пластичной консистенции состава 1:3 - одна часть цемента и три части песка по массе при водоцементном отношении 0,4, уплотненных на стандартной виброплощадке и выдержанных в воде при температуре 20+3°С 28 суток. Предел прочности при сжатии определяют после испытания на изгиб на половинках балочки. Нарастание прочности происходит неравномерно: вначале на 3 сутки она достигает 50 %, а на 7 сутки - 70 % от прочности в 28-суточном возрасте.
По прочности на сжатие портландцементы подразделяют на классы 22,5; 32,5; 42,5; 52,5.
Водопотребность цемента характеризуют показателем нормальной густоты - количество воды, которое необходимо для достижения заданной пластичности. Обычно для портландцемента нормальная густота составляет 21...28 %. Чем меньше водопотребность (нормальная густота ), тем выше качество цемента.
Скорость схватывания цемента зависит от минералогического состава, тонкости помола, количества воды затворения, температуры. Скорость схватывания является важной технологической характеристикой цемента. У портландцемента начало схватывания должно наступить не ранее 45 мин., а конец - не позднее 12 часов от начала затворения. Обычно начало схватывания у портландцемента наступает через 2...3 часа, а конец - через 5...8 часов. Как быстрое, так и медленное схватывание затрудняет и усложняет организацию производства строительных работ.
Равномерность изменения объема при твердении определяют путем испытания цементных лепешек стандартного размера кипячением их в парах воды; при этом они не должны обнаружить усадочных деформаций. Неравномерность изменения объема может быть обусловлена наличием в цементе окиси кальция, окиси магния и гипса. Цемент, неравномерно изменяющий объем при твердении, является недоброкачественным.

1.3.4. Цементобетоны

Бетоном называют строительный материал, полученный в результате перемешивания, укладки, уплотнения и затвердевания рационально рассчитанной смеси щебня (или гравия), песка, цемента, воды и добавок. Смесь перечисленных компонентов до затвердевания называют бетонной смесью.
Основной квалификацией бетонов по структурным признакам является деление по объемной массе:
особо тяжелые с объемной массой более 2600 кг/м3 имеют сложную структуру и изготавливаются с применением заполнителей, например, стальных опилок, барита и др.;
тяжелые с объемной массой 2100...2600кг/м3, у которых структура плотная, щебень из плотных и тяжелых горных пород или плотных металлургических шлаков, песок кварцевый;
облегченные с объемной массой 1800...2000кг/м3 могут иметь плотную структуру, но с применением щебня из пород пониженной плотности или крупнопористую с применением щебня из плотных пород;
легкие с объемной массой 1000...1800 кг/м3, обладающие плотным или крупнозернистым строением, с применением пористого щебня и песка, шлаковой пемзы (термозита), кремнезита, перлита;
особо легкие с объемной массой менее 1000 кг/м3 с пористой структурой без щебня и песка (ячеистый бетон) или с применением пористого песка или пористого щебня в сочетании с поризованным цементным камнем.
Наибольшее распространение в строительстве получил тяжелый бетон. Его применяют для изготовления бетонных и железобетонных конструкций, пролетных строений и опор мостов, устройства дорожных покрытий и др.
Важной характеристикой бетона является пористость, которая в значительной степени определяет его свойства. С увеличением пористости заметно возрастают водопоглощение, водонасыщение, водопроницаемость, уменьшается прочность, морозостойкость и долговечность бетона.
Водопоглощение у тяжелых бетонов колеблется в пределах 2...4 % по массе (или 5...10 % по объему).
Водонасыщение несколько больше водопоглощения. Разница между водопоглощением и водонасыщением обусловлена объемом замкнутых пор в бетоне.
Показателем водонепроницаемости бетона служит гидростатическое давление, при котором вода не просачивается через образец, испытуемый по стандартной методике. По водонепроницаемости бетоны делят на несколько марок: W 2; W 4; W6; W 10; W 12; W 14; W 16; W 18; W 20 (цифра обозначает величину гидростатического давления, при котором вода не просачивается).
Водопроницаемость, водопоглощение и водонасыщение бетона могут быть значительно снижены, если приготовить бетон с низким водоцементным отношением при достаточном качестве цементного теста, а также введении в бетон поверхностно-активных добавок. Они видоизменяют микроструктуру бетона за счет уменьшения водопотребности бетонной смеси, вовлечения некоторого количества воздуха в поры, которые блокируют сообщение между отдельными ка-пиллярами и микрополостями.
Прочность бетона как материала конгломератного строения зависит от прочности отдельных его составляющих, прочности сцепления между ними, а также особенностей структуры бетона в целом.
Прочность бетона прямо пропорциональна активности цемента. С понижением водоцементного отношения до определенного предела прочность бетона данного состава и при данном способе уплотнения повышается.
Прочность бетона в проектном возрасте характеризуют классами прочности на сжатие, осевое растяжение, растяжение при изгибе. Ведущим показателем прочности бетона и его механических свойств является класс бетона. Класс бетона характеризует предел прочности при сжатии бетонных кубов размером 15x15x15 см в возрасте 28 суток при твердении в нормальных условиях (температура 18...20°С и относительная влажность окружающей среды 90...100 %).
При расчете бетонных покрытий и оснований в качестве расчетной прочности бетона принимают предел прочности на растяжение при изгибе. Марка бетона при изгибе определяется прочностью при изломе неармированных бетонных балочек размером 15x15x50 см сосредоточенными силами.
Деформация бетона. Бетон является упруго-вязко-пластичным материалом, вследствие этого, при некоторой длительности действия механической нагрузки, в образце, наряду с упругими, возникают и вязко-пластические деформации.
С изменением влажности бетон претерпевает объемные изменения, если постоянно бетон находится во влажной среде, постепенно увеличивается его объем - набухание. И, наоборот, с уменьшением влажности происходит усадка. Повышенная усадка характерна для бетонов с большим содержанием цемента и водоцементным отношением (В/Ц>0,6).
Коэффициент температурного расширения при сжатии изменяется в зависимости от состава бетона и его влажности. Для практических целей можно принять коэффициент температурного расширения бетона равным 10 10-6 на 1°С. При оценке температурных деформаций в больших массивах обычно принимают половину значения указанного коэффициента, полагая, что остальная часть компенсируется ползучестью бетона. Температурные деформации бетона создают напряжения в плитах дорожных одежд и могут вызвать трещины. Для устранения этого явления в бетонных покрытиях устраивают температурные швы.
Долговечность и морозостойкость характеризуют длительность воздействия погодно-климатических, физико-химических и механических факторов, при которых свойства бетона не ухудшаются больше допустимых пределов. К бетонным элементам конструкций предъявляют требования по морозостойкости, которую определяют путем замораживания образцов до -15...-20°С и последующего оттаивания в воде при 15...20°С. Образцы испытывают после 28 суток после пропаривания.
За марку бетона по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, при котором прочность образцов уменьшается не более чем на 15 % по сравнению с прочностью образцов, испытанных в эквивалентном возрасте и без потери по массеболее 5 %. По показателям морозостойкости бетоны делятся на марки F50; F75; F100; F150; F200; F300; F400 и F500.
Бетон - пористый материал, и, если все поры в нем будут заполнены водой, он разрушится уже при первом цикле замораживания вследствие возникновения больших растягивающих напряжений из-за образования льда, объем которого на 9 % больше объема воды.
Морозостойкость бетона зависит от водоцементного отношения, вида и активности цемента, условий твердения и возраста бетона к моменту замораживания, плотности бетона, качества песка и щебня. Для морозостойких бетонов водоцементное отношение принимают не более 0,5 и применяют портландцементы с содержанием алюмината С3А меньше 8 %. Повышают морозостойкость гидрофобные воздухововлекающие добавки, способствующие образованию условно-замкнутых пор с гидрофобной поверхностью, которые в обычных условиях не заполняются водой и служат резервными порами, куда отжимается вода при замораживании бетона.
Бетон разрушается и под влиянием физико-химического воздействия факторов среды. Коррозия зависит главным образом от коррозийной стойкости цементного камня. Чем больше поверхность (внешняя и внутренняя) бетона, соприкасающаяся с агрессивной газообразной или жидкой средой, тем энергичнее коррозия бетона. Электрический ток разрушает влажный бетон, вызывая электролиз составляющих цементный камень.
Для придания коррозийной стойкости бетону необходимо применять цементы, соответствующие агрессивности среды: шлаковый сульфатостойкий или глиноземистый, а в отдельных случаях кислотоупорный. Следует придавать большую плотность бетону, защищать его поверхность от проникновения газов и воды с растворенными агрессивными веществами, затирая поверхность изделия раствором жидкого стекла с последующей обработкой хлористым кальцием и покрывая эту поверхность битумом или дегтем, пленкообразующими или высокомолекулярными веществами.

1.3.5. Органические вяжущие материалы

Сырьем для производства органических вяжущих материалов являются: нефть, каменный уголь, горючие сланцы. Фракционная разгонка такого сырья дает наряду с ценными продуктами - смолообразные остатки. После дополнительной переработки которых получают органические вяжущие. Органические вяжущие должны обеспечивать:
- хорошее обволакивание минеральных частиц;
- хорошее сцепление, позволяющее связывать минеральные частицы в прочный монолит;
- водоустойчивость и стабильность (не изменять своих свойств) в процессе службы в покрытиях.
Битумы бывают природные, нефтяные, сланцевые. Дегти - каменноугольные, торфяные, древесные. По главным строительным свойствам и консистенции органические вяжущие условно делят на следующие группы:
- твердые битумы и дегти при 2О...25°С обладают вязко-упругими свойствами, а при 12О...18О°С приобретают подвижность;
- вязкие битумы и дегти при 2О...25°С обладают вязкими и пластичными свойствами, а при 12О...18О°С приобретают текучесть;
- жидкие битумы и дегти при 2О...25°С - текучие. По мере испарения летучих углеводородов затвердевают и приобретают свойства близкие к вязким битумам.
Примерный групповой состав битума:
- масла 40...60 %;
- смолы 20...40 %;
- асфальтены 10...25 %;
- карбены и карбоиды 1...3 %.
Масла - вещества светло-желтого цвета. Масла придают вяжущему подвижность, текучесть, увеличивают испаряемость и снижают температуру размягчения.
Смолы - легкоплавные, вязко-пластичные вещества, их содержание в вяжущем обуславливает его растяжимость и эластичность.
Асфальтены - твердые неплавкие вещества с плотностью более 1000 кг/м3. Они обеспечивают температурную устойчивость, вязкость и твердость (хрупкость) битума.
Карбены по составу похожи на асфальтены, но содержат больше углерода, имеют большую плотность и более темный цвет. Их содержание повышает вязкость и хрупкость.
Карбоиды - твердые вещества типа сажи, нерастворимы в органических растворителях.

1.3.6. Асфальтобетон

Асфальтобетоном называют материал, который получают после уплотнения асфальтобетонной смеси, приготовленной в смесителях в нагретом состоянии из взятых в определенных соотношениях щебня (гравия), песка, минерального порошка и битума. Смесь минерального порошка с битумом называют асфальтовым вяжущим.
Асфальтобетонные смеси подразделяют на щебеночные, гравийные и песчаные (ГОСТ 9128-97).
Асфальтобетонные смеси в зависимости от вязкости битума и условий применения подразделяют на виды:
горячие - приготовленные с использованием вязких и жидких нефтяных и дорожных битумов и применяемые непосредственно после приготовления с температурой смеси при укладке не ниже 120°С;
холодные - приготавливаемые с использованием жидких нефтяных дорожных битумов, допускаемые к длительному хранению и укладываемые с температурой не ниже 5°С.
Горячие смеси в зависимости от наибольшего размера зерен минеральных материалов подразделяют на:
крупнозернистые - с зернами размером до 40 мм;
мелкозернистые - с зернами размером до 20 мм;
песчаные - с зернами размером до 5 мм.
Холодные смеси подразделяют на мелкозернистые и песчаные.
Крупнозернистый асфальтобетон применяют для устройства нижнего слоя покрытия, шероховатая и пористая поверхность которого обеспечивает хорошее сцепление с верхним слоем.
Мелкозернистый асфальтобетон применяют для устройства верхнего слоя или однослойного покрытия. Мелкозернистый асфальтобетон базальтовой структуры применяют для устройства верхнего слоя двухслойных покрытий при интенсивном движении с дополнительным втапливанием щебня для создания шероховатой поверхности. Асфальтобетон этого типа обладает высокой сопротивляемостью механическим воздействиям и атмосферным факторам.

1.3.7. Природные каменные материалы

К природным минеральным материалам относят различные мо-нолитные скальные горные породы, а также продукты их естественного выветривания: валуны, дресву, жерству, гравий, песок.
Природные минеральные материалы являются продуктами эво-люционных процессов, происходящих в земной коре и на дневной поверхности.
Каждая разновидность монолитной скальной горной породы характеризуется структурой (строением) и текстурой (сложением). Структура и текстура характеризуют размеры, взаимное расположение и сцепление минералов, слагающих горную породу, а следовательно, во многом определяют комплекс строительно-технических свойств и пригодность материала для дорожного строительства.
Вследствие широкого распространения природных минеральных материалов в земной коре и частых выходов их на дневную поверхность они наиболее доступны для разработки и применения.
По происхождению (генезису) скальные горные породы клас-сифицируют на изверженные (магматические), осадочные и мета-морфические.
Изверженные горные породы (магматические) образовались из магмы, в процессе ее остывания. В зависимости от условий, при которых происходило застывание магмы (скорость остывания и давление), различают интрузивные (глубинные) горные породы, т. е. застывшие на большой глубине (граниты, сиениты, диориты, габбро), и эффузивные (излившиеся), остывание которых происходило на поверхности земли (кварцевый и ортоклазовый порфиры, базальты, андезиты, диабазы и др.).
Осадочные горные породы являются продуктом разрушения более ранних по возрасту горных пород под воздействием механических, химических и биологических факторов и последующего осаждения и цементации этих продуктов. Часть осадочных пород образовалась в результате химических процессов в водной среде и последующего выпадания минеральных веществ в виде осадков на дно водоема.
В зависимости от условий образования осадочных пород различают механические отложения (валуны, галька, гравий, песок), химические осадки (некоторые виды известняков, известковый туф, гипс, ангидрит и др.) и органогенные образования, являющиеся продуктами отложения остатков различных организмов (большинство известняков, опоки, диатомиты, доломиты и др.).
Метаморфические горные породы образовались из первичных изверженных или осадочных пород при воздействии на них повышенных температур (без расплавления) и высоких давлений. К метаморфическим породам относятся мрамор, образовавшийся из осадочной карбонатной породы - известняка, кварцит (образовался из песчаника), кристаллические сланцы, гнейсы и др.
Природные минеральные материалы в дорожном строительстве применяют в виде щебня из естественного камня, щебня из гравия, гравия, гравийных и щебеночных смесей, гравийно-щебеночно-песчаных смесей, штучного камня (брусчатка, мозаика, булыжник, грубоколотая шашка), песка и минерального порошка.

8. Классификация дорожных одежд и покрытии приведена в табл. 1.1.

Дорожная одежда - это слоистая конструкция, укладываемая на земляное полотно в пределах проезжей части дороги. Она предназначена для восприятия нагрузок от автомобилей и обеспечения максимально благоприятных условий скоростному и безопасному движению автотранспорта вне зависимости от погодно-климатических и временных факторов.

По характеру работы под нагрузкой дорожные одежды классифицируются на жесткие и нежесткие. По степени капитальности нежесткие дорожные одежды разделяются на типы - капитальные, облегченные, переходные и низшие.

В общем случае дорожные одежды содержат несколько конструктивных слоев, главными из которых являются покрытие и основание. Основание делится на несущий слой и дополнительные слои.

Рисунок 1 Конструктивные слои дорожных одежд

Проектирование конструкций дорожных одежд состоит из трех взаимноувязанных этапов:

- конструирования вариантов;

- расчета их на прочность, морозоустойчивость и, при необходимости, дренирующую способность основания;

- технико-экономического анализа.

Конструкция дорожной одежды рассматривается как упругое многослойное полупространство нагруженное на внешней поверхности гибким круговым штамп диаметром D, передающим равномерно распределенную нагрузку (удельное давление) величиной р. Каждый слой характеризуется толщиной и деформационными характеристиками (модулем упругости и коэффициентом Пуассона). Давление на покрытие p усреднено и вследствие определенной жесткости шин установлено несколько большим, чем давление воздуха в шинах, и составляет 0,6 МПа.

Грунт земляного полотна ( подстилающий грунт) - это тщательно уплотненные и спланированные верхние слои земляного полотна, отвечающего требованиям СНиП «Автомобильные дороги. Нормы проектирования», на которые укладывают слои дорожной одежды. На подстилающий грунт передается и распределяется все давление от транспортных нагрузок и на него существенно воздействуют изменчивые природные факторы, поэтому он является весьма ответственным элементом конструкции. Повышение сопротивления грунта внешним нагрузкам, предотвращение возникновения разуплотнения его вследствие морозного пучения, увлажнения, осушение и обеспечение постоянства водного режима земляного полотна - наиболее рациональные способы увеличения прочности, долговечности и экономичности дорожной одежды; поэтому дорожную одежду и земляное полотно следует проектировать совместно - комплексно.

1.4. Капитальную дорожную одежду с усовершенствованным покрытием проектируют с таким расчетом, чтобы под действием движения ни в одном из ее слоев и подстилающем грунте не возникло остаточных деформации, и, кроме того, чтобы воздействие природных факторов не приводило к недопустимым изменениям в ее элементах. Только при этом могут быть гарантированы работа всей дорожной конструкции в стадии обратимых (упругих) деформаций и сохранение высоких эксплуатационных качеств, обеспечивающих возможность движения с расчетными скоростями в течение всего периода между капитальными ремонтами.

Облегченную дорожную одежду с усовершенствованным покрытием, эксплуатационные требования к которому сравнительно высоки, рассчитывают также на работу без накопления остаточных деформации, но на менее продолжительный срок между капитальными ремонтами, чем для капитальных одежд. Это позволяет принять меньший запас прочности и облегчить конструкцию.

При проектировании переходных дорожных одежд, выравнивание которых не сопряжено со значительными затратами (щебеночные, гравийные и подобные им покрытия), допустимо некоторое накопление, остаточных деформаций под действием движения.

1.5. В районах с влажным и холодным климатом па участках с неблагоприятными грунтово-гидрологическими условиями должны быть предусмотрены меры по осушению и обеспечению морозоустойчивости дорожной одежды и земляного полотна.

Таблица 1.1

Типы дорожных одежд Виды покрытий, материал и способы его укладки Область применения
Усовершенствованные покрытия :
Капитальные а) из асфальтобетонных смесей марки I , укладываемых и горячем и теплом состоянии На дорогах I , II , I - c и III п категорий, городских скоростных дорогах и магистральных улицах общегородского и районного значения, основных внутризаводских дорогах крупных промышленных предприятий
  б) из асфальтобетонных смесей марки II , укладываемых в горячем состоянии На дорогах III, I - c и IVп категорий и городских дорогах местного значения при соответствующем технико-экономическом обосновании
Облегченные a ) из асфальтобетонных смесей марки II , укладываемых и теплом состоянии; дегтебетонных марки I , укладываемых в горячем состоянии На дорогах III и II -с категорий, городских дорогах местного значения, на внутризаводских дорогах
  б) из холодных асфальтобетонных смесей марки I ; дегтебетонных горячих смесей марок I и II , холодной мелкозернистой дегтебетонной смеси марки На дорогах III и IVп категории
  в) из асфальтобетонных смесей марки III , укладываемых в горячем и теплом состоянии; холодных асфальтобетонных смесей марки II; дегтебетонных смесей марки II, холодной мелкозернистой и песчаной дегтебетонной смеси марки II; материалов, обработанных битумом по способу смешения на дороге с поверхностной обработкой На дорогах IV и II -с категорий
  г) из каменных материалов, обработанных органическими вяжущими в установке или методами пропитки (полупропитки); черного щебня, приготовленного в установке и уложенного по способу заклинки; эмульсионно-битумо-минеральных смесей, и том числе из каменных материалов, обработанных битумной эмульсией; пористой и высокопористой асфальтобетонной смеси с поверхностной обработкой; прочного щебня с двойной поверхностной обработкой На дорогах III , IV и II -c категории и на первой стадии двухстадийного строительства дорог II , III и IVп категорий
Покрытия переходные
Переходные из щебня прочных пород, устроенные по способу заклинки без применения вяжущих материалов; грунтов и малопрочных каменных материалов, укрепленных вяжущими; булыжного и колотого камня (мостовые) На дорогах IV, V, II -c и III -с категории и на первой стадии двухстадийного строительства дорог III категории
Низшие из щебеночно-(гравийного)-песчаных смесей; малопрочных каменных материалов и шлаков; грунтов, укрепленных или улучшенных различными местными материалами; древесных материалов и др. На дорогах V и III -с категории

Примечания : 1. Асфальтобетонные покрытия не следует предусматривать на дорогах IV категории, если элементы плана и продольного профиля не соответствуют скорости движения автомобилей 80 км/ч в равнинной, 60 км/ч - в пересеченной и 10 км/ч - в горной местности.

2. Покрытия, в которых содержатся каменноугольные дегти, не следует применять на участках дорог, проходящих в пределах населенных пунктов, а также на внутризаводских и сельскохозяйственных дорогах.

3. По эстетическим соображениям или при необходимости пропуска транспортных средств на гусеничном ходу на городских дорогах всех категорий и площадях допускается устройство покрытия в виде мостовой из брусчатки или мозаики на бетонном или каменном основании.

4. При проектировании реконструкции автомобильных дорог рекомендуется предусматривать использование по возможности существующих дорожных одежд в качестве оснований, после снятия для дальнейшей переработки и применения асфальтобетона старого покрытия.

5. Асфальтобетон из теплых смесей рекомендуется применять только па дорогах I - II дорожно-климатических зон.

При проектировании дорожных одежд в районах вечномерзлых грунтов (I дорожно-климатическая зона), помимо прочего, должны быть учтены характер вечномерзлых грунтов, их температурный и водный режим, а также влияние толщины деятельного слоя и вечномерзлого грунта (жесткого основания) на прочность дорожной одежды 1