Тема 5. Анализ временных рядов
Понятие временного ряда и его отличия от случайной выборки. Составляющие временного ряда. Проверка гипотезы о неизменности среднего значения временного ряда как процедура проверки наличия тренда. Процедуры аналитического выравнивания (сглаживания) временного ряда. Подбор порядка аппроксимирующего полинома с помощью метода последовательных разностей.
Стационарные временные ряды и их характеристики. Понятия автокорреляции, автокорреляционной функции, временного лага, коэффициента автокорреляции, коррелограммы. Интерпретация коррелограмм.
Гетероскедастичность пространственной выборки. Искажение характеристик точности МНК-оценок, обусловленное игнорированием автокоррелированности остатков. Проверка гипотезы о наличии/отсутствии автокоррелированности регрессионных остатков. Положительная и отрицательная автокорреляция.
Использование авторегрессионных моделей: модель авторегрессии порядка р, определение порядка авторегрессионной модели. Методы исключения из временных рядов основной тенденции с целью устранения автокорреляции: метод последовательных или конечных разностей и метод коррелирования отклонений уровней ряда от основной тенденции.
Способы построения множественной регрессионной модели по временным рядам. Модели рядов, содержащих сезонную компоненту. Определение максимального количества тригонометрических составляющих при представлении временного ряда в виде ряда Фурье. Оценивание параметров периодической функции, проверка их значимости.
Тема 6. Системы линейных одновременных уравнений
Общий вид системы одновременных уравнений. Модель спроса-предложения как пример системы одновременных уравнений. Условия идентифицируемости уравнений системы. Структурная и приведенная формы эконометрической модели, построенной на базе систем одновременных уравнений. Рекурсивная модель как частный случай модели в структурной форме. Идентификация систем одновременных уравнений (статистическое оценивание неизвестных значений параметров системы): идентификация рекурсивных систем, косвенный метод наименьших квадратов, двухшаговый МНК оценивания структурных параметров отдельного уравнения, трехшаговый МНК одновременного оценивания всех параметров системы. Оценивание параметров системы внешне не связанных уравнений.