Фармакокинетические модели: однокамерная модель, многокамерные модели.
Однокамерная модель. Весь организм – единый однородный контейнер. Устанавливается быстрое динамическое развитие между содержанием препарата в кровяном русле и его концентрацией в экстраваскулярных тканях. ЛС быстро и равномерно распределяется по всему объему крови. Скорость уменьшения содержания препарата в крови пропорциональна его концентрации.
Двухкамерная модель. Часто после поступления ЛС в организм не удается быстро достичь равновесия между содержанием ЛС в крови и его концентрацией в экстраваскулярной жидкости. Тогда полагают, что в совокупности тканей и биологических жидкостей организма можно выделить две камеры, которые отличаются степенью доступности для проникновения ЛС. К центральной камере относится кровь (часто с интенсивно перфузируемыми органами – печень, почки), к периферической – интерстициальная жидкость внутренних органов и тканей.
Депонирование лекарственных веществ.
При распределении в организме некоторые Л В частично могут задерживаться и накапливаться в различных тканях. Происходит это в основном вследствие обратимого связывания ЛВ с белками, фосфолипидами и нуклеопротеинами клеток. Этот процесс носит название депонирование. Концентрация вещества в месте его депонирования (в депо) может быть достаточно высокой. Из депо вещество постепенно высвобождается в кровь и распределяется по другим органам и тканям, в том числе достигая места своего действия. Депонирование может привести к удлинению (пролонгированию) действия препарата или возникновению эффекта последействия.
Биотрансформация лекарственных веществ, биологический смысл, направленность, влияние на активность лекарств. Основные фазы метаболических превращений лекарств в организме. Клиническое значение. Влияние пола, возраста, экологических факторов, алкоголя, курения на биотрансформацию лекарственных веществ. Метаболическое взаимодействие лекарств
Биотрансформация ЛС – химические превращения ЛС в организме.
Биологический смысл биотрансформации ЛС: создание субстрата, удобного для последующей утилизации (в качестве энергетического или пластического материала) или в ускорении выведения ЛС из организма.
Основная направленность метаболических превращений ЛС: неполярные ЛС → полярные (гидрофильные) метаболиты, выводимые с мочой.
Выделяют две фазы метаболических реакций ЛС:
• несинтетические реакции (метаболическая трансформация);
• синтетические реакции (конъюгация).
Лекарственные вещества могут подвергаться или метаболической биотрансформации (при этом образуются вещества, называемые метаболитами), или конъюгации (образуются конъюгаты). Влияние биотрансформации на фармакологическую активность ЛС:
1) чаще всего метаболиты биотрансформации не обладают фармакологической активностью или их активность снижена по сравнению с исходным веществом
2) в некоторых случаях метаболиты могут сохранять активность и даже превосходить по активности исходное вещество
3) иногда в ходе биотрансформации образуются токсичные вещества
4) иногда в ходе биотрансформации образуются метаболиты с противоположными фармакологическими свойствами
5) ряд веществ является пролекарствами, которые исходно не дают фармакологических эффектов, но в ходе биотрансформации преобразуются в БАВ
Клиническое значение биотрансформации ЛС: т. к. доза и частота приема, необходимые для достижения эффективной концентрации в крови и тканях, могут варьировать у больных из-за индивидуальных различий в распределении, скорости метаболизма и элиминации ЛС, важен их учет в клинической практике.
Влияние на биотрансформацию ЛС различных факторов:
А) Функциональное состояние печени: при ее заболеваниях клиренс ЛС обычно уменьшается, а период полуэлиминации возрастает.
Б) Влияние факторов среды: курение способствует индукции цитохрома P450, в результате чего ускоряется метаболизм ЛС в ходе микросомального окисления
В) У вегетарианцев биотрансформация ЛС замедлена
Г) у пожилых и молодых пациентов характерна повышенная чувствительность к фармакологическому или токсическому действию ЛС
Д) у мужчин метаболизм некоторых ЛС происходит быстрее, чем у женщин, т. к. андрогены стимулируют синтез микросомальных ферментов печени {этанол}
Е) Высокое содержание в пище белков и интенсивная физическая нагрузка: ускорение метаболизма ЛС.
Ж) Алкоголь и ожирение замедляют метаболизм ЛС
Метаболическое взаимодействие ЛС:
1) индукция ферментов метаболизма ЛС – абсолютное увеличение их количества и активности вследствие воздействия на них определенных ЛС. Индукция ведет к ускорению метаболизма ЛС и (как правило, но не всегда) к снижению их фармакологической активности
2) ингибирование ферментов метаболизма ЛС – угнетение активности ферментов метаболизма под действием некоторых ксенобиотиков
Болезни, влияющие на метаболизм ЛС:
А) болезни почек (нарушение почечного кровотока, острые и хронические заболевания почек, исходы длительных почечных заболеваний)
Б) болезни печени (первичный и алкогольный циррозы, гепатиты, гепатомы)
В) болезни ЖКТ и эндокринных органов
В) индивидуальная непереносимость некоторых ЛС (отсутствие ферментов ацетилирования – непереносимость аспирина)
9. Клиренс - понятие, размерность, метод определения. Общий клиренс и его составляющие. Выражение через параметры Vd, t ½ , Kel.
Клиренс (CI) — объём плазмы или крови, полностью освобождающийся от ЛС в единицу времени. Этот показатель количественно характеризует выведение препарата и выражается в мл/мин или л/ч. В рамках линейной модели клиренс рассчитывают по формуле:
Cl=Vd·Kel
где Сl — клиренс, Vd — объём распределения, Ке1 — константа скорости элиминации
• Общий клиренс представляет собой сумму почечного и печёночного клиренсов (так как эти органы служат основными путями выведения ЛС). (Другие пути выведения или внепечёночный метаболизм при расчёте общего клиренса обычно не учитывают.)
- Печёночный клиренс характеризует биотрансформацию ЛС в печени (метаболический клиренс) и выведение с жёлчью (жёлчный клиренс).
- Почечный клиренс отражает выведение препарата с мочой.
• Основные физиологические факторы, определяющие клиренс, — функциональное состояние основных физиологических систем организма, объём притекающей крови и скорость кровотока в органе. Печёночный клиренс зависит от скорости печёночного кровотока или функциональной способности метаболизирующих ферментов.
10. Константа элиминации - понятие размерность, варианты расчета.
Константа скорости элиминации (kel, мин-1) – показывает, какая часть ЛС элиминируется (Удаляется) из организма в единицу времени Þ Kel = Aвыд/Аобщ, где Авыд – количество ЛС, выделяемое в ед. времени, Аобщ – общее количество ЛС в организме.
Значение kel обычно находят путем решения фармакокинетического уравнения, описывающего процесс элиминации лекарства из крови, поэтому kel называют модельным показателем кинетики. Непосредственного отношения к планированию режима дозирования kel не имеет, но ее значение используют для расчета других фармакокинетических параметров.
Константа элиминации прямо пропорциональна клиренсу и обратно пропорционально объему распределения (из определения клиренса): Kel=CL/Vd; [Ke] = час-1/мин-1=доля в час.
11. Период полувыведения - понятие, размерность, варианты расчета через параметры Kel, Vd, Cl.
Период полуэлиминации (t½, мин) – это время, необходимое для снижения концентрации ЛС в крови ровно наполовину. При этом не играет роли каким путем достигается снижение концентрации – при помощи биотрансформации, экскреции или же за счет сочетания обоих процессов.
Период полувыведения – важнейший фармакокинетический параметр, позволяющий:
А) рассчитать время наступления равновесной концентрации (равно 5 периодам полуэлиминации)
Б) определить время полной элиминации препарата
В) предсказать концентрацию ЛС в любой момент времени (для ЛС с кинетикой первого порядка)
12. Кинетика лекарств в крови при непрерывном введении. Понятие о стационарной концентрации (Css), время ее достижения
Особенность введения ЛС с постоянной скоростью - плавное изменение его концентрации в крови при введении, при этом:
1) время достижения стационарной концентрации лекарства составляет 4-5t½ и не зависит от скорости инфузии (величины вводимой дозы)
2) при увеличении скорости инфузии (вводимой дозы) величина СSS также увеличивается в пропорциональное число раз
3) элиминация лекарства из организма после прекращения инфузии занимает 4-5t½.
СSs – равновесная стационарная концентрация – концентрация ЛС, достигаемая при скорости введения равной скорости выведения, поэтому:
За каждый последующий период полувыведения концентрация ЛС прирастает на половину от оставшейся концентрации.
Подходы к управлению уровнем СSs: изменение вводимой дозы ЛС или интервала введения
13. Фармакодинамика. Определение
Фармакодина́мика (греч. pharmakon лекарство + dynamikos сильный)
раздел фармакологии, изучающий локализацию, механизм действия и фармакологические эффекты лекарственных веществ ( представление о том, как, где и каким образом лекарственные вещества действуют в организме).
14. Фармакологические эффекты, локализация и механизмы действия лекарственных веществ. Физико-химические (неэлектролитные) и химико-биологические механизмы действия лекарств.
К фармакологическим эффектам лекарственных веществ относятся, например, повышение частоты сердечных сокращений, снижение артериального давления, повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжительности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определенных, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты лекарственного вещества являются полезными — благодаря этим эффектам лекарственное вещество используют в медицинской практике (основные эффекты), а другие эффекты, вызываемые лекарственным веществом, не используются и, более того, являются нежелательными (побочные эффекты).
Для многих веществ известны места их преимущественного действия в организме — т.е. локализация действия. Некоторые вещества преимущественно действуют на определенные структуры мозга (противопаркинсонические средства, антипсихотические средства), известны вещества, которые в основном действуют на сердце (сердечные гликозиды).
Благодаря современным мртодическим приемам, можно определить локализацию действия веществ не только на системном и органном, но на клеточном и молекулярном уровнях. Например, сердечные гликозиды действуют на сердце (органный уровень), на кардиомиоциты (клеточный уровень), на мембран кардиомиоцитов (молекулярный уровень).
Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают снижение артериального давления, уменьшая синтез ангиотензина II (ингибиторы ангиотензинконвертирующего фермента), или блокируя поступление Са2+ в гладкомышечные клетки (блокаторы потенциалозависимых кальциевых каналов), или уменьшая выделение медиатора норадреналина из окончаний симпатических волокон (симпатолитики). Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.
15. Понятие о рецепторах. Молекулярная природа рецепторов (регуляторные белки, ферменты, транспортные и структурные белки, нуклеиновые киспоты). Основные виды рецепторов (осн.сигнальные механизмы)
Рецепторы – Молекулярные компоненты клетки или организма, которые взаимодействуют с ЛС и индуцируют ряд биохимических событий, ведущих к развитию фармакологического эффекта.
Концепция рецепторов в фармакологии:
1. Рецепторы детерминируют количественные закономерности действия ЛС
2. Рецепторы ответственны за селективность действия ЛС
3. Рецепторы посредники действия фармакологических антагонистов
Концепция рецепторов - основа целенаправленного применения лекарственных средств, влияющих на регуляторные, биохимические процессы и коммуникации.
Молекулярная природа рецепторов:
1. регуляторные белки, посредники действия различных химических сигналов: нейромедиаторов, гормонов, аутокоидов
2. ферменты и трансмембранные белки переносчики (Na+, K+ АТФаза)
3. структурные белки (тубулин, белки цитоскелета, клеточная поверхность)
4. ядерные белки и нуклеиновые кислоты
Сигнальные механизмы действия лекарств:
1) проникновение растворимых в липидах лигандов через мембрану и их действие на внутриклеточные рецепторы.
2) сигнальная молекула связывается с внеклеточным доменом трансмембранного белка и активирует ферментативную активность его цитоплазматического домена.
3) сигнальная молекула связывается с ионным каналом и регулирует его открытие.
4) сигнальная молекула связывается с рецептором на поверхности клетки, который сопряжен с эффекторным ферментом посредством G-белка. G-белок активирует вторичный посредник.
Типы трансмембранной сигнализации:
А) через 1-TMS-рецепторы, обладающие и не обладающие тирозинкиназной активностью
Б) через 7-ТMS-рецепторы, связанные с G-белком
В) через ионные каналы (лиганд-зависимые, потенциал-зависимые, щелевые контакты)
Вторичные посредники: цАМФ, ионы Ca2+, ДАГ, ИФ3.
16. Связывание вещества с рецептором. Понятие об аффинитете.
Для того чтобы вещество подействовало на рецептор, оно должно связаться с рецептором. В результате образуется комплекс «вещество—рецептор». Образование комплекса «вещество-рецептор» осуществляется за счет межмолекулярных связей. Существует несколько видов таких связей.
Ковалентные связи — самый прочный вид межмолекулярных связей. Они образуются между двумя атомами за счет общей пары электронов.
Ионные связи - менее прочные - возникают между группировками, несущими разноименные заряды (электростатическое взаимодействие).
Ионные и дипольные связи характерны для взаимодействия лекарственных веществ с рецепторами.
Водородные связи играют весьма существенную роль во взаимодействии лекарственных веществ с рецепторами. Это достаточно слабые связи, для их образования необходимо, чтобы молекулы находились друг от друга на расстоянии не более 0,3 нм.
Ван-дер-ваальсовы связи— наиболее слабые связи, образуются между двумя любыми атомами, если они находятся на расстоянии не более 0,2 нм. При увеличении расстояния эти связи ослабевают.
Гидрофобные связи образуются при взаимодействии неполярных молекул в водной среде.
Аффинитет (от лат. afflnis — родственный) - способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор». Кроме того, термин аффинитет используется для характеристики прочности связывания вещества с рецептором (т.е. продолжительности существования комплекса «вещество—рецептор»). Количественной мерой аффинитета (прочности связывания вещества с рецептором) является константа диссоциации (Kd), чем меньше Kd, тем выше аффинитет.
17. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов.
Вещества, которые обладают аффинитетом, могут обладать внутренней активностью. Внутренняя активность - способность вещества при взаимодействии с рецептором стимулировать его и таким образом вызывать определенные эффекты.
В зависимости от наличия внутренней активности лекарственные вещества разделяют на: агонисты и антагонисты.
Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики — вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохимических реакций и развиваются определенные фармакологические эффекты.
Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью). Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).
Антагонисты (от греч. antagonisma - соперничество, anti- против, agon -борьба) — вещества, обладающие аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию на рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому их также называют блокаторами рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или уменьшением действия эндогенных агонистов данных рецепторов. При этом в основном возникают эффекты, противоположные эффектам агонистов.
18. Термины и понятия количественной фармакодинамики (эффект, эффективность, активность; агонисты: полные и частичные; антагонисты; конкурентные и неконкурентные, агонисты-антагонисты).
Эффект (ответ) – количественный выход реакции взаимодействия клетки, органа, системы или организма с фармакологическим агентом.
Эффективность – мера реакции по оси эффекта – величина отклика биологической системы на фармакологическое воздействие; Это способность ЛС оказывать максимально возможное для него действие. Т. е. фактически это максимальная величина эффекта, которую можно достигнуть при введении данного лекарства. Численно характеризуется величиной Еmax. Чем выше Еmax, тем выше эффективность лекарства
Активность – мера чувствительности к ЛС по оси концентраций, характеризует аффинность (сродство лиганда к рецептору), Показывает, какая доза (концентрация) ЛС способна вызвать развитие стандартного эффекта, равного 50% от максимально возможного для этого лекарства. Численно характеризуется величиной ЕС50 или ED50. Чем выше активность ЛС, тем меньшая его доза требуется для воспроизведения терапевтического эффекта.
Эффективность: 1=2>3 Активность: 1>3>2
В клинической деятельности важнее знать эффективность, а не активность, т. к. нас больше интересует способность ЛС вызывать определенное действие в организме.
Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики — вещества, обладающие аффинитетом и внутренней активностью. При взаимодействии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохимических реакций и развиваются определенные фармакологические эффекты.
Полные агонисты, взаимодействуя с рецепторами, вызывают максимально возможный эффект (обладают максимальной внутренней активностью).
Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней активностью).
Антагонисты (от греч. antagonisma - соперничество, anti- против, agon -борьба) — вещества, обладающие аффинитетом, но лишенные внутренней активности. Они связываются с рецепторами и препятствуют действию на рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому их также называют блокаторами рецепторов.
Если антагонисты занимают те же рецепторы, что и агонисты, они могут вытеснять друг друга из связи с рецепторами. Такой антагонизм называют конкурентным, а антагонисты называются конкурентными антагонистами.
Если антагонисты занимают другие участки макромолекулы, не относящиеся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентными антагонистами.
Некоторые лекарственные вещества сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают агонисты-антагонисты.
19. Типы фармакотерапевтического воздействия (этиотропная, патогенетическая, симптоматическая, заместительная терапия).
Профилактическое применение проводится с целью предупреждения определенных заболеваний (дезинфицирующие, химиотерапевтические вещества и др.).
Этиотропная (каузальная) терапия направлена на устранение причины заболевания (так антибиотики действуют на бактерии).
Симптоматическая терапия устраняет нежелательные симптомы (например, боль), что оказывает существенное влияние на течение основного патологического процесса. Во многих случаях симптоматическая терапия играет роль патогенетической.
Заместительная терапия используется при дефиците естественных биогенных веществ. Так, при недостаточности желез внутренней секреции (сахарном диабете, микседеме) вводят соответствующие гормональные препараты.
20. Виды действия лекарственных веществ.
1. Местное действие – действие вещества, возникающее на месте его приложения (анестетик – на слизистую оболочку)
2. Резорбтивное (системное) действие – действие вещества, развивающееся после его всасывания, поступления в общий кровоток, а затем в ткани. Зависит от путей введения ЛС и их способности проникать через биологические барьеры.
Как при местном, так и резорбтивном действии лекарственные средства могут оказывать либо Прямое, либо Рефлекторное влияние:
А) прямое влияние - непосредственный контакт с органом-мишенью (адреналин на сердце).
Б) рефлекторное – изменение функции органов или нервных центров путем влияния на экстеро - и интерорецепторы (горчичники при патологии органов дыхания рефлекторно улучшают их трофику)