Беспроводные (радио) каналы и сети

Применение электромагнитных волн для телекоммуникаций имеет уже столетнюю историю. В 1864 году Дж. Максвелл теоретически показал, что вокруг проводника с переменным током должно возникать переменное электромагнитное поле, распространяющееся со скоростью света. В 1886-89 годах Г. Герц экспериментально показал существование электромагнитных волн. А. С. Попов развил идеи Герца и в 1895 году продемонстрировал свой грозоотметчик. Первые радиопередатчики были построены и запатентованы Маркони и Слаби. Так появилась радиосвязь. В начале для радиосвязи использовались схемы на основе азбуки Морзе. Позднее по мере совершенствования техники и улучшения избирательной способности приемников появилась возможность голосовой связи. Это изобретение стало основой радиолокации, мобильной связи, телевидения, радиорелейных и спутниковых (первый геостационарный коммуникационный спутник заработал в 1965 году) коммуникаций. Впечатляющие успехи здесь достигнуты в связи с применением цифровых методов, например, методики мультиплексирования CDMA (Code Division Multiple Access). В перспективе только радио (из числа современных технологий) может обеспечить межпланетные связи. Лазерные методы пригодны пока для ограниченных расстояний, максимум до Луны.Большинство каналов работают на частотах от 100 до 900 МГц. Радиоволны в этом диапазоне не способны огибать препятствия и по этой причине гарантируют надежный прием лишь при непосредственной видимости между антеннами передатчика и приемника. Кривизна земли является естественным ограничителем максимального радиуса надежного приема телевизионного сигнала. Телевидение высокого разрешения, идущее на смену традиционному, требует еще большей полосы и частот. На подходе также и стерео телевидение. Телевидения стало основой и видео-телефонии. В городах телевизионный сигнал чаще передается по оптоволоконным кабелям. В 50-х годах прошлого века началось развитие вычислительной техники и микроэлектроники, качественно поменявших все направления телекоммуникаций. Чтобы увеличить пропускную способность канала связи можно расширять его полосу или улучшать отношение сигнала к шуму Первое, что приходит в голову, это увеличение амплитуды сигнала (). Пока в электронике царили вакуумные лампы такие и даже большие амплитуды были с технической точки зрения вполне возможны, хотя вряд ли рациональны. Но после внедрения полупроводниковых приборов такие уровни сигналов стали совершенно недопустимы.
Сфера телекоммуникаций всегда сильно зависела от уровня развития технологий. Начиналось все с электромеханических устройств, но современное цифровое телевидение и Интернет немыслимы без использования новейших достижений микроэлектроники. Человечество во все времена использовало не слишком надежную технику, не очень высококачественные средства телекоммуникаций и достаточно несовершенные процедуры. В настоящее время вычислительные машины во много раз надежнее, чем 40 лет назад, каналы связи заметно сократили частоту ошибок при передаче, только удельное число ошибок на одну программу, похоже осталось неизменным.
Но никогда жизнь человека не зависела так сильно от не слишком надежной техники и программ, как сегодня. Все, начиная с мобильного телефона, систем жизнеобеспечения в больнице, платежных средств, управления транспортными потоками и кончая Интернетом, использует изощренные вычислительные средства и программы, связанные друг с другом посредством каналов связи конечной надежности. Сейчас, как никогда, нужно научиться, работая с ненадежной техникой, с программами, содержащими ошибки, и с каналами, которые регулярно допускают ошибки, добиваться достаточно надежного и достоверного результата, чтобы выжить. Люди накопили большой опыт в этой области. Если вы что-то не расслышали из-за шума, вы просите повторить сказанное (современные телекоммуникационные средства используют аналогичный алгоритм). Для повышения надежности в каналах используется контроль по четности и избыточные коды для коррекции ошибок. Там где нужна повышенная надежность вычислений, применяются два вычислителя. Результат воспринимается лишь при идентичных результатах расчета. Но это не поможет, если на обоих вычислителях используются программы, содержащие идентичные ошибки. Можно, конечно, поручить написание программ двум разным фирмам, но это слишком дорого и не всегда возможно.В такой ситуации время от времени возникает мысль выработать единый стандарт, которому бы следовали все разработки (оборудования и программ), чтобы они могли работать друг с другом. При этом может приводиться пример сети Интернет. Именно благодаря стандартизации протоколов эта сеть стала всемирной.
Спектр используемых волн делится на ряд диапазонов, приведенных в таблице 2.

return false">ссылка скрыта

Таблица 2.

Номер Название диапазона Частота Длина волны
Высокочастотный 3 - 30 МГц 100 - 10 м
VHF 50 - 100 Мгц 6 - 3 м
УВЧ (UHF) 400-1000 МГц 75-30 см
Микроволновый 3 109 - 1011 Гц 10 см - 3 мм
Миллиметровый 1011 - 1013Гц 3 мм - 0,3 мм
Инфракрасный 1012 - 6 1014 0,3 мм - 0,5 ?

Чтобы избежать всеобщего хаоса, было заключено международное соглашение, которое регламентирует использование частот различными странами для определенных целей. В 1991 году ITU-R (Международный Телекоммуникационный союз) распределил частоты для переносных переговорных устройств. Но в США к тому времени уже использовалось достаточно большое число таких приборов, и их хозяева не согласились тратиться на их перенастройку. С тех пор такие устройства, изготовленные в США, не работают в Европе или Азии и наоборот. Далее следуют диапазоны видимого света, ультрафиолета, рентгеновских и гамма-лучей. Диапазоны часто, используемые различными каналами связи показаны на рис. 8.

Кроме уже указанных примеров перспективным полем применения радиомодемов могут стать “подвижные ЭВМ”. Сюда следует отнести и ЭВМ бизнесменов, клиентов сотовых телефонных сетей, и все случаи, когда ЭВМ по характеру своего применения подвижна, например, медицинская диагностика на выезде, оперативная диагностика сложного электронного оборудования, когда необходима связь с базовым отделением фирмы, геологические или геофизические исследования и т.д. Радиомодемы позволяют сформировать сеть быстрее (если не считать времени на аттестацию оборудования, получение разрешения на выбранную частоту и лицензии на использование данного направления канала). В этом случае могут стать доступными точки, лишенные телефонной связи (что весьма привлекательно для условий России). Подключение объектов к центральному узлу осуществляется по звездообразной схеме. Заметное влияние на конфигурацию сети оказывает ожидаемое распределение потоков информации. Если все объекты, подключенные к узлу, примерно эквивалентны, а ожидаемые информационные потоки не велики, можно в центральном узле обойтись простым маршрутизатором, имеющим достаточное число последовательных интерфейсов. Применение радио-бриджей особенно выигрышно для организаций, имеющих здания, отстоящие друг от друга на несколько километров. Возможно использование этих средств связи и для подключения к сервис-провайдеру, когда нужны информационные потоки до 2 Мбит/с (например, для проведения видео конференций). Если расстояния не велики (<5км), можно воспользоваться всенаправленной антенной (см. рис. 9).

Все соединяемые объекты (А, Б, В, и Г) должны быть оснащены радио-бриджами. Такая схема подключения эквивалентна с одной стороны кабельному сегменту Ethernet, так как в любой момент времени возможен обмен лишь между двумя объектами; с другой стороны радио-бриджи А, Б, В и Г логически образуют много портовый бридж (или переключатель), что исключает загрузку локальных сетей объектов “чужими” пакетами. Модификации таких схем связи позволяют строить телекоммуникационные системы по схеме сотовых телефонных сетей. При построении каналов на основе радиорелейных систем или радио-бриджей следует учитывать возможность их взаимного влияния (см. рис. 3.3.6). Проектируя такие каналы в городе и используя направленные параболические антенны, нужно учитывать возможные помехи от зданий и профиля местности. Предельные расстояния для радио каналов приводятся поставщиками в предположении, что в пределах первой зоны Френеля каких-либо физических помех нет. Абсолютное ограничение дальности связи радиорелейных каналов накладывает кривизна земли, смотри рис. 10. Для частот выше 100 МГц волны распространяются прямолинейно (рис. 10.А) и, следовательно, могут фокусироваться. Для высоких частот (ВЧ) и УВЧ земля поглощает волны, но для ВЧ характерно отражение от ионосферы (рис. 10 Б), что сильно расширяет зону вещания (иногда осуществляется несколько последовательных отражений), но этот эффект неустойчив и сильно зависит от состояния ионосферы.

При построении длинных радиорелейных каналов приходится ставить ретрансляторы. Если антенны размещены на башнях высотой 100 м, расстояния между ретрансляторами может составлять 80-100 км. 4-го октября 1957 года в СССР был запущен первый искусственный спутник земли, в 1961 году в космос полетел Ю. А. Гагарин, а вскоре на орбиту был выведен первый телекоммуникационный спутник “Молния”, так началась космическая эра коммуникаций. Первый в РФ спутниковый канал для Интернет (Москва-Гамбург) использовал геостационарный спутник “Радуга” (1993).