Неинерциальные системы отсчёта (НИСО). Силы инерции.

Неинерциальные системы отсчёта (НИСО).НИСО называется система, движущаяся ускоренно относительно инерциальной СО . СО связана с телом отсчёта, которое, по определению, принимается за абсолютно твёрдое. Опр 2: в СО, в которых имеются силы тяготения и в к-х не выполняется 1-ый з-н Ньютона, наз. НИСО.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: Силы инерции берутся таким, чтобы обеспечить в НИСО те условия, которые фактически имеются. 2-ой з-н Ньютона в НИСО: ma’=F+Fин.,где a’ — ускорение в НИСО, F — «обычные силы», Fин — силы инерции. Переносная сила инерции направлена противоположно переносному ускорению НИСО и равна Fин= — ma0.

Силы инерции— силы,обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО).

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1. Силы инерции при ускоренном поступательном движении системы отсчета:

На тележке к штативу на нити подвешен шарик массой m (рис. 1). Пока тележка покоится или движется прямолинейно и равномерно, нить, которая удерживает шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции (натяжения) нити Т.


 

Рис.1

 

Если тележку привести в поступательное движение с ускорением а0, то нить будет отклоняться от вертикали в сторону, обратную движению, до такого угла α, пока результирующая сила F=P+T не даст ускорение шарика, равное а0. Значит, результирующая сила F направлена в сторону ускорения тележки а0 и для установившегося движения шарика (теперь шарик движется вместе с тележкой с ускорением а0) равна F=mgtgα=ma0, откуда

т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.


ПРИМЕР: Проявление сил инерции при поступательном движении мы можем видеть в повседневных явлениях. Если поезд набирает скорость, то пассажир, сидящий при этом по ходу поезда, прижимается к спинке сиденья под действием силы инерции. Наоборот, при торможении поезда пассажир отклоняется от спинки сиденья, т.к. сила инерции направлена в противоположную сторону. Особенно силы инерции заметны при внезапном торможении поезда. Эти силы проявляются в перегрузках, возникающие при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящиеся во вращательной системе отсчета:

Пусть диск равномерно вращается с угловой скоростью ω (ω=const) вокруг перпендикулярной ему оси, которая проходит через его центр. На диске установлены маятники, на разных расстояниях от оси вращения и на нитях висят шарики массой m. Когда диск начнет вращаться, шарики отклоняются от вертикали на некоторый угол (рис. 2).


 

Рис.2

 

В инерциальной системе отсчета, которая связана, например, с помещением, где установлен диск, происходит равномерное вращение шарика по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Значит, на него действует сила, равная F=mω2R и которая направлена перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести Р и силы реакции (натяжения) нити Т: F=P+T. Когда движение шарика установится, то F=mgtgα=mω2R, откуда

т. е. углы отклонения нитей маятников будут тем больше, чем больше угловая скорость вращения и чем больше расстояние R от центра шарика до оси вращения диска;

Относительно системы отсчета, которая связана с вращающимся диском, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой Fс, являющаяся ничем иным, как силой инерции, так как никакие другие силы на шарик не действуют. Сила Fc, называемая центробежной силой инерции, направлена по горизонтали от оси вращения диска и равна

(3)

ПРИМЕР: На практике действие центробежных сил инерции испытывают, например, пассажиры в движущемся автобусе на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают очень больших значений. При проектировании быстро вращающихся деталей машин (винтов самолетов, роторов и т. д.) используются специальные механизмы для уравновешивания центробежных сил инерции.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета:

Пусть шарик массой m движется с постоянной скоростью ν' вдоль радиуса равномерно вращающегося диска (ν'=const, ω=const, ν перпендикулярно ω). Чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, будем использовать жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения прямолинейно равномерно со скоростью ν' (рис. 3б). При отклонении шарика стержень действует на него с некоторой силой F. Во вращающейся системы отсчета, т.е. относительно диска, шарик движется прямолинейно и равномерно, что объясняется тем, что сила F уравновешивается приложенной к шарику силой инерции Fk, которая перпендикулярной скорости ν'. Эта сила называется кориолисовой силой инерции.

 

Рис.3

 

Можно показать, что сила Кориолиса

Вектор Fk перпендикулярен векторам скорости v' тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Следуя из 3-х СО получим основной закон динамики для неинерциальных систем отсчета: