ОБЩИЕ СВЕДЕНИЯ

 

Различают два вида зубчатых передач - закрытые и откры­тые. Эти передачи обычно разрабатывают в курсовых проектах учащиеся техникумов.

Закрытые, заключенные в отдельный корпус (например, редукторного типа) или встроенные в машину. Проектировочный расчет их выполняют на выносливость по контактным напря­жениям во избежание усталостного выкрашивания рабочих поверхностей зубьев. Определив на основе этого расчета размеры колес и параметры зацепления, выполняют затем про­верочный расчет на выносливость зубьев по напряжениям изгиба для предотвращения усталостного разрушения зубьев; обычно напряжения изгиба в зубьях, рассчитанных на контакт­ную прочность, оказываются ниже допускаемых. Однако при выборе слишком большого суммарного числа зубьев колес (более 200) или применении термохимической обработки поверх­ностей зубьев до высокой твердости (HRC>45) может возник­нуть опасность излома зубьев. Для предотвращения этого раз­меры зубьев следует определять из расчета их на выносливость по напряжениям изгиба.

Открытые зубчатые передачи рассчитывают на выносливость по напряжениям изгиба с учетом износа зубьев в процессе эксплуатации. В этом случае нет необходимости проверять выносливость поверхностей зубьев по контактным напряжениям, так как абразивный износ поверхностей зубьев предотвращает выкрашивание их от переменных контакт­ных напряжений.

Зубчатые передачи, работающие с большими кратковремен­ными (пиковыми) перегрузками, необходимо проверять на от­сутствие опасности хрупкого разрушения или пластических деформаций рабочих поверхностей зубьев от контактных напряжений, а также на отсутствие хрупкого излома или пласти­ческих деформаций при изгибе. Это относится равно как к закры­тым, так и открытым передачам.

 

 

Рис. 3.1. Контактные напряжения в зоне соприкосновения цилиндров вдоль образующей

Кратковременное действие пиковых нагрузок не оказывает влияния на поверхностную и общую усталостную прочность зубьев. Поэтому определение напряжений, вызываемых такими нагрузками, следует рассматривать как проверку зубьев на по­верхностную и общую статическую прочность. Расчетные формулы имеют тот же вид, что и формулы для расчетов на усталостную прочность, но значения допускаемых напряжений, принимаемых в этих расчетах, различны.

Расчет закрытых зубчатых передач на выносливость рабо­чих поверхностей зубьев по контактным напряжениям основан на формуле Герца. Эта формула служит для определения макси­мального нормального напряжения в точках средней линии контактной полоски в зоне соприкосновения двух круговых цилиндров с параллельными образующими (рис. 3.1). При выводе формулы были приняты допущения: материал цилиндров идеально упругий, в точках контакта он находится в условиях объемного напряженного состояния — трехосного сжатия; наибольшее (по модулю) напряжение сжатия — главное напря­жение s3 — принято обозначать smах; при эллиптическом за­коне распределения давления по ширине площадки контакта

 

(3.1)

где q – нагрузка на едницу длины контактной линии; с – ширина контактной площадки, определяемая из выражения

 

 

Подставив это значение в формулу (3.1.), получим

 

(3.2)

1 1 1 1

Здесь ______ - приведенная кривизна цилиндров, ______ = ______ + ______, где r1 и

rпр rпр r1 r2

r1 r2

r2 – радисы цилиндров; отсюда - rпр = _________ ; v – коэффициент Пуассона, при-

r1 + r2

нятый равным 0,3; Е – модуль упругости материала цилиндров; если цилиндры изготовлены из разных материалов, то определяют приведенный модуль упругости

 

§ 3.2. РАСЧЕТ ЦИЛИНДРИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС НА КОНТАКТНУЮ ВЫНОСЛИВОСТЬ

 

Для расчета передач с цилиндрическими зубчатыми коле­сами (рис. 3.2) на выносливость рабочих поверхностей зубьев по контактным напряжениям пользу­ются формулой (3.2); максималь­ное нормальное напряжение sтax принято обозначать sн; индекс H (лат.) соответствует первой букве фамилии знаменитого физика Hertz'a; нагрузка на единицу дли­ны контактной линии зубьев

 

где нормальная сила в зацеплении;

Рис. 3.2. Геометрия зубчатого эвольвентного зацепления
Ft
- окружная сила; aw – угол зацепления; по ГОСТ 13755-81 он принят равным 20о*; b - угол наклона зуба по отношению к образующей делитель-ного цилиндра; Кнкоэффициент, учитывающий ди-

намиче­скую нагрузку и неравномерность распределения

нагрузки между зубьями и по ширине венца; b — шири-

на венца; ke - коэф­фициент степени перекрытия.

Приведенный радиус цилиндров rпр следует заменить величи­ной приведенного радиуса эвольвентных профилей зубьев в полюсе зацепления; так как

 

то

 

Подстановка приведенных значений величин в формулу (3.2) дает возможность выразить зависимость sн от параметров зубчатой передачи в виде

 

(3.3)

 

Дальнейшие расчеты даны в соответствии с рекоменда­циями ГОСТ 21354-75. Допущенные в отдельных случаях незначительные отступления, практически не влияющие на величину конечного результата, имеют целью некоторое упро­щение расчета.


* В дальнейшем будем считать aw » a, где a - делительный угол профиля или угол профиля исходного контура

 

Для практических расчетов по ГОСТ 21354-75 введены сле­дующие условные обозначения:

— коэффициент, учитывающий механиче­ские свойства материала сопряженных зубчатых колес; его раз­мерность соответствует размерности Ö E;

– безразмерный коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления;

— безразмерный коэффициент, учитывающий сум­марную длину

контактных линий; для прямозубых колес ke = __________; для косозубых и шев-

4 - ea

ронных ke = ea, где ea - степень перекрытия.

С этими обозначениями формула (3.3) примет вид

 

(3.4)

 

Все величины, входящие в эту формулу, должны быть выра­жены в соответствующих единицах. В ГОСТ 21354-75 допу­щено отклонение от этого правила: момент выражен в Н × м, a d и b в мм, напряжение и модуль упругости в МПа (числен­но соответствует МН/м2).

В дальнейшем, следуя правилу теории размерностей, будем выражать момент в Н × мм, d и b в мм, sн и Е в МПа (что численно соответствует Н/мм2).

Для стали принимают: Е = 2,15 × 105 МПа; коэффициент Пуассона v = 0,3. При этих значениях коэффициент

 

 

Численные значения коэффициента ZH:

для прямозубых колес при a = 20°, b = 0 ZH = 1,76;

для косозубых колес при a = 20°, b = 8¸15° ZH = 1,74¸1,71;

для шевронных колес ZH = 1,57.

Средние значения коэффициента Ze:

для прямозубых передач при a = 20° Ze = 0,9 ;

для косозубых передач Ze = 0,8.

После подстановки указанных значений коэффициентов в формулу (3.4) и замены в ней d2 через межосевое расстояние aw

 

получим формулы для проверочного расчета:

прямозубых передач

(3.5)

 

косозубых передач

 

(3.6)

 

Выражая в этих формулах величину b через aw с помощью коэффициента

 

ширины зубчатого венца получим формулу для проектировочного расчета aw, мм

 

(3.7)

 

Дляпрямозубых передач Ка = 49,5; для косозубых и шев­ронных передач Ка = 43,0.

Коэффициент КH = КНaНbКHv, где КHaкоэффициент, учи­тывающий неравномерность распределения нагрузки между зубьями; для прямозубых колес принимают KHa = 1,0; для косозубых колес в зависимости от окружной скорости v: при v =10¸20 м/с и 7-й степени точности КНa1,0¸1,1, при v до 10 м/с и 8-й степени точности KHa = 1,05¸1,15; КНbкоэф­фициент, учитывающий неравномерность распределения нагруз­ки по ширине венца. При проектировании закрытых зубчатых передач редукторного типа принимают значения KHb по табл. 3.1.

3.1. Ориентировочные значения коэффициента KHb для зубчатых передач редукторов, работающих при переменной нагрузке

 

Расположение зубчатых колес относительно опор   Твердость НВ поверхностей зубьев
£350 > 350
Симметричное Несимметричное Консольное 1,00-1,15 1,10-1.25 1,20-1,35 1,05-1,25 1,15-1,35 1,25-1,45
Меньшие значения принимают для передач с отношением ybd = b/d1 = 0,4: при увеличении ybd до 0,6 для консольно расположенных колес и ybd до 0,8 при несимметричном расположении их следует прини­мать большие из указанных в таблице значений KHb . При постоянной нагрузке KHb = 1. Определение ybd см. формулу (3.8).  

Динамический коэффициент KHvопределяют в зависимости от окружной скорости v колес и степени точности их изготов­ления.

Для прямозубых колес при v до 5 м/с следует назначать 8-ю степень точности по ГОСТ 1643-81; при этом KHv = 1,05¸1,10.

Для косозубых колес при v до 10 м/с назначают также 8-ю степень точности и принимают KHv= 1,0¸1,05. При v свыше 10 до 20 м/с и 7-й степени точности КHv. = 1,05¸1,1. Меньшие из указанных значений относятся к колесам с твердостью поверх­ностей зубьев НВ £ 350, большие - при твердости НВ > 350.

Коэффициенты КHa и KHvмогут быть определены только тогда, когда известны размеры передачи (надо знать скорость v). Поэтому при проектировочных расчетах по формуле (3.7) пред­варительно используют один коэффициент KHb, учитывающий неравномерность распределения нагрузки по ширине венца (см. табл. 3.1 ).

При проектировании редукторов обычно задаются величиной yba = b / a; для прямозубых передач принимают yba = 0,125¸0,25; для косозубых yba = 0,25¸0,40; для шевронных yba = 0,5¸1,0. Чтобы вычислить ybd по выбранному

 

значению yba следует воспользоваться равенством ; тогда

 

(3.8)

 

Допускаемое контактное напряжение определяют при проек­тировочном расчете по формуле

 

(3.9)

 

Здесь sH lim b, — предел контактной выносливости при базовом числе циклов (значения sH lim b, указаны в табл. 3.2); КHL — коэффи­циент долговечности; если число циклов нагружения каждого зуба колеса больше базового, то принимают KHL = 1. Именно такой случай типичен для курсовых проектов, выполняемых в техникумах.

В других условиях, когда эквивалентное число циклов перемены напряжений NHE меньше базового NHO , то

 

 

Если при расчете колес из нормализованной или улучшен­ной стали КHL получается больше 2,6, то принимают КHL = 2,6; для колес из закаленной стали КHL £ 1,8; [SH] - коэффициент безопасности; для колес из нормализованной и улучшенной стали, а также при объемной закалке принимают [SH] = 1,1¸1,2; при поверхностном упрочнении зубьев [SH ] = 1,2¸1,3.

Данные для выбора материалов шестерни и колеса приве­дены в табл. 3.3. Рекомендуется назначать для шестерни и колеса сталь одной и той же марки, но обеспечивать соответст­вующей термической обработкой твердость поверхности зубьев шестерни на 20—30 единиц Бринелля выше, чем колеса.