Гравитационное поле Земли


Гравитационное поле Земли —это по­ле силы тяжести. Сила тяжести действует по­всюду на Земле и направлена по отвесу к по­верхности геоида, уменьшаясь по величине от полюсов к экватору.

У Земли было бы нормальное гравита­ционное поле при условии наличия у нее фи­гуры эллипсоида вращения и равномерного распределения в нем масс. Однако Земля та­ким телом не является. Разницу между напря­женностью реального гравитационного поля и теоретического (нормального) поля называют аномалией силы тяжести. Эти аномалии бы­вают вызваны как различным вещественным составом и плотностью горных пород, так и видимыми неровностями земной поверхности (рельефом). Однако далеко не всегда горы вы­зывают увеличение силы тяжести (положи­тельную аномалию), а океанические впади­ны — их недостаток (отрицательную анома­лию). Такое положение объясняется изо-стазией (от греч. isostasios — равный по


весу) — уравновешиванием твердых и отно­сительно легких верхних горизонтов Земли на более тяжелой верхней мантии, находящейся в пластичном состоянии в слое астеносферы. По современным геофизическим представле­ниям, в недрах Земли на определенной глу­бине (глубине компенсации) происходит гори­зонтальное растекание подкоровых масс ве­щества из мест их избытка на поверхности (в виде гор и т. д.) к периферии и выравни­вание давления вышележащих слоев. Сущест­вование астеносферных течений — необходи­мое условие изостатического равновесия зем­ной коры.

При появлении или исчезновении леднико­вой нагрузки в областях древних и современ­ных ледников тоже нарушается изостатичес-кое равновесие. При нарастании массы льда покровных ледников земная кора прогибает­ся, при стаивании льда происходит ее подня­тие. Такие вертикальные движения земной ко­ры называются гляциоизостазией (от лат.


 

 


glacies — лед). Гляциоизостатические опуска­ния наиболее резко выражены под централь­ными частями современных ледниковых щи­тов — Антарктиды и Гренландии, где ложе ледников местами прогнуто ниже уровня мо­ря. Поднятия особенно интенсивны в облас­тях, недавно освободившихся от материковых льдов (например, в Скандинавии, Канаде), где их суммарные значения за послеледниковое время достигают нескольких десятков метров. Современные скорости поднятия по инстру­ментальным измерениям местами доходят до 1 м в столетие, например на шведском побе­режье Ботнического залива.

Значение силы тяжести исключительно ве­лико. Она определяет истинную фигуру Зем­ли – геоид. Подкоровые течения в астено­сфере вызывают тектонические деформации и движения литосферных плит, создавая круп­ные формы рельефа Земли. Сила тяжести обус­ловливает гравитационные рельефообразующие процессы: эрозию, оползни, осыпи, обвалы, селевые потоки, движение ледников в горах и т. д. Сила тяжести определяет макси­мальную высоту гор на Земле. Она удержи­вает атмосферу и гидросферу, ей подчиняется перемещение воздуха и водных масс. Сила тя­жести помогает людям и многим животным удерживать вертикальное положение. Геотро­пизм — ростовые движения органов расте­ний под влиянием силы земного тяготения — обусловливает вертикальное направление стеблей и первичного корня. Недаром грави­тационная биология, возникшая в эпоху, ког­да человек начал обживать мир без тяжес­ти — Космос, включает растения в число сво­их экспериментальных объектов. Силу тяжести необходимо учитывать при рассмотрении бук­вально всех процессов в географической обо­лочке. Без учета силы тяжести нельзя рассчи­тать исходные данные для запусков ракет и космических кораблей, невозможна гравимет­рическая разведка рудных полезных ископае­мых и нефтегазоносных структур.