Физико-химические процессы при выплавке стали

Сталь нельзя сразу получить из железной руды. Обязательно сначала получают чугун, а затем из него можно выплавить сталь. Однако при выплавке стали используют в небольшом количестве железную руду. Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне (таблица 1), поэтому сущность передела чугуна в сталь заключается в снижении содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

 

Таблица 1 - Состав передельного чугуна и низкоуглеродистой стали, мас. %

Материал C Si Mn P S
Передельный чугун 4 – 4,4 0,76 – 1,26 до 1,75 0,15 – 0,3 0,03 – 0,07
Сталь низкоуг-леродистая 0,14 – 0,22 0,12 – 0,3 0,4 – 0,65 0,05 0,055

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах: Fe + 1/2O2 = FeO + 263,68 кДж.Одновременно с железом окисляются Si, P, Mn, C и др. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их: 2FeO + Si = SiO2 + 2Fe + 330,5 кДж; 5FeO + 2P = P2O5 + 5Fe + 225,94 кДж; FeO + Mn = MnO + Fe + 122,59 кДж; FeO + C = CO + Fe – 153,93 кДж.

Процессы выплавки стали осуществляют в три этапа. Первый этап – расплавление шихты и нагрев ванны жидкого металла. Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора. Главная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит оксид кальция. Фосфорный ангидрид образует с оксидом железа нестойкое соединение (FeO)3·P2O5. Оксид кальция характеризуется более сильными основными свойствами, чем оксид железа, поэтому при невысоких температурах связывает P2O5 и переводит его в шлак: 2[P] + 5(Fe O) + (CaO) = (4CaO · P2O5) + 5[Fe].

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, а также достаточное содержание в шлаке FeO. Для повышения содержания FeO в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками CaO.

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур. При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты: FeO + C = CO + Fe – 153,93 кДж.

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород. При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объему ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам CO, а также газы, проникающие в пузырьки CO. Все это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали. На этом этапе создаются условия для удаления серы, которая в стали находится в виде сульфида (FeS), растворимого в основном шлаке. Чем выше температура, тем большее количество сульфида железа (FeS) растворяется в шлаке и взаимодействует с оксидом кальция CaO: (FeS) + (CaO) = (CaS) + (FeO). Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении железа из его оксида, растворённого в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами: осаждающим и диффузионным. Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, ферроалюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо. В результате раскисления восстанавливается железо и образуются оксиды: MnO, SiO2, Al2O3 и др., которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали: а) спокойные, б) кипящие, в) полуспокойные. Спокойная сталь получается при полном раскислении в печи и ковше. Кипящая сталь раскислена в печи неполностью, ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода. Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (Ni, Co, Mo, Cu), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых сродство к кислороду больше, чем у железа (Si, Mn, Al, Cr, V, Ti и др.), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.