Бериллий и сплавы на его основе: характеристика бериллия, его механические свойства; бериллиевые сплавы. Примеры.
1. Бериллий — светло-серый металл. Бериллий может существовать в двух полиморфных модификациях. Низкотемпературная модификация, существующая до 1250 °С, имеет гексагональную плотноупакованную решетку, высокотемпературная — решетку объемно-центрированного куба. Плотность бериллия 1845 кг/м3.
Комплекс физических, химических и механических свойств позволяет отнести бериллий к наиболее ценным конструкционным материалам.
Бериллий является редким металлом. Его содержание в земной коре составляет 5 · 10–4 %.
Для производства компактного бериллия в виде заготовок применяют методы порошковой металлургии. В безокислительной среде бериллий измельчают в порошок и подвергают горячему прессованию в вакууме.
По сравнению с другими легкими материалами бериллий обладает уникальным сочетанием физических и механических свойств. По удельной прочности и жесткости он превосходит все другие металлы. Благодаря высокому значению модуля упругости (Е = 300 ГПа) и низкой плотности, бериллий по удельной жесткости превосходит все известные материалы, сохраняя это преимущество до 500–600 °С.
Бериллий отличается высокой электро- и теплопроводностью, приближающейся к теплопроводности алюминия, а по удельной теплоемкости [≈ 2500 Дж/(кг × град)] превосходит все остальные металлы. Бериллий стоек к коррозии. Подобно алюминию, при взаимодействии бериллия с воздухом на поверхности его образуется тонкая оксидная пленка, защищающая металл от действия кислорода даже при высокой температуре.
Недостатками бериллия является высокая стоимость, обусловленная дефицитностью исходного сырья и сложностью его переработки, а также низкая хладостойкость. Ударная вязкость технического бериллия ниже 5 Дж/см2.
Несмотря на эти недостатки, уникальная совокупность технических преимуществ позволяет относить бериллий к числу выдающихся аэрокосмических материалов.
2. СПЛАВЫ БЕРИЛЛИЯ
Главная сложность при легировании бериллия состоит в малых размерах его атомов, в результате чего большинство элементов при растворении сильно искажают кристаллическую решетку, сообщая сплаву повышенную хрупкость. Легирование возможно лишь теми элементами, которые образуют с бериллием механические смеси с минимальной взаимной растворимостью.
Серьезный недостаток бериллия, заключающийся в низкой ударной вязкости и хладноломкости, может быть преодолен использованием сплавов с алюминием. Для получения бериллиево-алюминиевых сплавов также используют методы порошковой металлургии.
Для увеличения прочности сплавы Be—Al дополнительно легируют магнием и серебром — элементами, растворимыми в алюминиевой фазе. В этом случае матрица представляет собой более прочный и вязкий сплав Al—Mg или Al—Ag.
Широкое распространение получили сплавы меди с 2–5 % бериллия, так называемые бериллиевые бронзы. В России широко применяется бериллиевая бронза БрБ2 с 2 % Be. Бериллиевые бронзы обладают высокими упругими свойствами. Их используют для изготовления пружин, сохраняющих упругость в широком интервале температур, в том числе в криогенных условиях. Они хорошо сопротивляются усталости и коррозии.
Бериллиевые бронзы немагнитны и не искрят при ударе. Из них изготавливают инструменты для работы во взрывоопасных средах — шахтах, газовых заводах, где нельзя использовать обычные стали. Литейные бериллиевые сплавы (ЛБС используют для деталей корпусов оснований, рам, кронштейнов и др. Бериллиевые сплавы характеризуются высокими значениями теплоемкости, которые в 1,6 раза выше, чем у сплавов алюминия. Теплопроводность и температуропроводность сплавов лишь незначительно уступает литейным алюминиевым сплавам.
Коррозионная стойкость бериллиевых сплавов находится на высоком уровне. Анодная оксидированная пленка на поверхности и лакокрасочные покрытия дополнительно обеспечивают надежную защиту сплавов ЛБС от коррозии.
Деформированные бериллиевые сплавы обладают высокой жесткостью и низкой плотностью. Эти сплавы являются перспективными для использования в некоторых элементах самолетных двигателей.