Пример.

>> digits(30); vpa(pi)

ans = 3.14159265358979323846264338328

В примере получили прекрасный результат - число с 30 зна­чащими знаками, при чём ответ ans оказался принадлежащим новому классу – sym object. Другими словами Symbolic Math Тооlbох работает с данными нового типа – с символьными объектами.

y1=y; s2=['n=' num2str(n)]; hText=text(1.5, 1.5^2*n-1, s2); set(hText,'FontSize',[14]); end

Пример. Построить семейство функций ( ) и найти их общие точки, причём в объекте Figure подписать графики и точки, обозначить оси, подписать заголовок и использовать разные цвета для построенных графиков. При решении использовать функцию num2str(x), переводящее число x в строковую величину:

>> x=-2:0.1:2;

title('{\itf(x)=x^{n}}');

xlabel('x');

ylabel('y');

hFigure=gcf;

set(hFigure,'Color',[1 1 1]);

hText=text;

set(hText,'FontSize',[18]);

for n=2:4

y=x.^n;

hold on

hPlot=plot(x,y);

set(hPlot,'Color',[1.8/n 0.7 0.5]);

set(hPlot,'LineWidth',2);

if n~=2

for i=1:length(y)

s='';

if y(i)==y1(i)

hold on

plot(x(i),y(i),'ko');

s=['(' num2str(x(i)) ',' num2str(y(i)) ')'];

hText=text(x(i),y(i)+2, s); set(hText,'FontSize',[16]);

end

end

end

y1=y; s2=['n=' num2str(n)];

hText=text(1.5, 1.5^2*n-1, s2); set(hText,'FontSize',[14]);

end

 

 

Рис. 12