Решение системы находим по формулам Крамера

.

Вычислим определитель системы

.

Последовательно заменив в , первый, второй и третий столбцы столбцом свободных членов, получим соответственно

;

;

.

Ответ : .

 

2. Дана система из трех уравнений с тремя неизвестными. Установить, что система уравнений имеет единственное решение и найти его с помощью обратной матрицы

.

Решение.

Если определитель системы отличен от нуля, то система имеет единственное решение (теорема Крамера).

Вычислим определитель данной системы :

,

следовательно, система имеет единственное решение.

Данную систему можно записать в матричной форме :

, где , , .

Так как , то для матрицы существует обратная матрица . Умножив матричное уравнение слева на , получим , откуда , или .

Найдем обратную матрицу по формуле

,

где алгебраическое дополнение элемента .

,

,

.

.

Тогда

.

Ответ : .

 

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений

.

Решение.

Выпишем расширенную матрицу данной системы и приведем ее к ступенчатому виду

.

Последовательно умножим первую строку на (–2) и прибавим ее ко второй строке, затем умножим на (–3) и прибавим к третьей строке, умножим на (–2) и прибавим к четвертой строке, получим

.

Ко второй строке полученной матрицы прибавим третью строку, умноженную на , затем во вновь полученной матрице умножим третью строку на , четвертую – на (–1), затем последовательно умножим вторую строку на 2 и прибавим ее к третьей строке, умножим на 7 и прибавим к четвертой строке, получим

.

Третью строку полученной матрицы умножим на , четвертую – на , затем третью строку умножим на (–1) и прибавим к четвертой строке, получим

.

Найденная матрица имеет треугольный вид; по этой матрице запишем систему уравнений, эквивалентную исходной системе,

.

Последовательно находим неизвестные, начиная с последнего уравнения, ; подставим в третье уравнение найденное , вычислим , ; затем из второго уравнения находим , ; из первого уравнения получим , .

Ответ : .

 

4. Найти общее решение однородной системы линейных алгебраических уравнений .

Решение.

Элементарными преобразованиями строк приведем матрицу системы к эквивалентной матрице , которой соответствует уравнение , эквивалентное исходной системе. Таким образом, общее решение может быть записано в форме , или , . Решений бесчисленное множество – любая пара, связанная указанной зависимостью, обращает левые части уравнений данной системы в нуль. В системе - число неизвестных и число уравнений. , матрица системы, расширенная матрица системы. В силу теоремы Кронекера-Капелли система имеет бесчисленное множество решений, зависящих от одного параметра . Иногда общее решение удобнее использовать в форме

.

 

5. При каких значениях система

имеет нетривиальные (ненулевые) решения ? Найти эти решения.

Решение.

Однородная система линейных уравнений имеет ненулевые решения, когда ее определитель равен нулю. Из этого условия и найдем соответствующие значения :

.

Найдем теперь соответствующие решения.

1) При система имеет вид :

.

Определитель этой системы равен нулю. Это означает наличие линейной зависимости между уравнениями системы. Замечаем, что первое уравнение получается из второго и поэтому его можно отбросить. Имеем

.

Так как определитель из коэффициентов при неизвестных не равен нулю, то в качестве базисных неизвестных возьмем (хотя можно брать и другие пары неизвестных) и перенесем члены с в правые части уравнений :

.

Полученную систему можно решить по формулам Крамера :

где , , .

Тогда , . Полагая , где произвольное действительное число , получаем решение системы : , , .

2) При система имеет вид :

.

Можно решить эту систему и методом Гаусса. Составим расширенную матрицу полученной системы :

и приведем ее к матрице ступенчатого вида :

.

Восстановим систему для полученной матрицы

.

Полагая , где произвольное действительное число, получаем решение системы : .

Ответ : При система имеет нетривиальные решения : , , , . При система имеет нетривиальные решения : , .