Амплитудное детектирование

8.4.1. Общие сведения о детектировании

Детектирование (демодуляция) – это процесс преобразования высокочастотного модулированного колебания в напряжение (или ток), которое изменяется по закону модуляции. Этот процесс реализуют устройства, называемые детекторами.

Детектор формирует на выходе сигнал, закон изменения которого повторяет закон изменения передаваемого модулированным колебанием сообщения. В зависимости от вида модуляции, которая используется передающим устройством (амплитудная, частотная или фазовая), в приемном устройстве выполняется амплитудное, частотное или фазовое детектирование. Детектор реализует процесс, обратный процессу модуляции. Поэтому его называют иногда демодулятором.

Функциональное предназначение детектора свидетельствует, что он осуществляет спектральное преобразование входного сигнала. Сущность этого преобразования заключается в том, что входной модулированный сигнал с узкополосным спектром в области высоких частот преобразуется в выходной модулирующий сигнал со спектром в области низких частот. Поэтому процесс детектирования при любом виде модуляции можно реализовать только с помощью нелинейных или параметрических цепей.

Структура детектора в случае использования нелинейного элемента представлена на рис. 8.11

, при амплитудной модуляции;

, при фазовой модуляции;

, при частотной модуляции,

, , - коэффициенты пропорциональности.

 

Рис. 8.11. Структурная схема детектора

 

Нелинейный элемент осуществляет преобразование спектра входного сигнала. Фильтр низкой частоты выделяет необходимые составляющие спектра модулирующего сигнала.

 

8.4.2. Амплитудный детектор

 

Амплитудный детектор формирует сигнал, совпадающий по форме с огибающей входного амплитудно-модулированного колебания. Процесс детектирования будем рассматривать для АМ-сигнала с тональной модуляцией, т.е. для входного сигнала вида

.

Выходной сигнал детектора должен быть равен

.

Практическая схема амплитудного детектора приведена на рис. 8.12,а.

 

Рис. 8.12. Функциональная схема амплитудного детектора и ВАХ диода

В качестве нелинейного элемента используется диод, характеристика которого (рис. 8.12,б) имеет нелинейный (ОА) и линейный (АВ) участки. Фильтром низкой частоты являются параллельно включенные емкость и сопротивление нагрузки детектора. Амплитудно-частотная и фазочастотная характеристики фильтра рассмотрены в п. 5.4.

Физические явления в схеме амплитудного детектора поясним, пользуясь схемой детектора (рис. 8.12,а), графиками входного и выходного напряжений (рис. 8.13,а).

Рис. 8.13. Входное и выходное напряжения детектора

 

Входное напряжение приложено к аноду диода. Напряжение на конденсаторе, которое по существу является выходным напряжением, приложено к катоду диода. Через диод протекает ток в том случае, если напряжение на аноде больше, чем напряжение на катоде.

В интервале времени, когда текущее значение напряжения на входе больше, чем напряжение на конденсаторе (от точки до точки , см. рис.8.13,а), диод открыт, через него протекает ток и конденсатор заряжается этим током (с небольшим отставанием от роста входного напряжения).

В интервале времени, когда текущее значение становится меньше напряжения на конденсаторе (точка , см. рис.8.13,а), потенциал анода диода становится меньше потенциала катода, что приводит к закрытию диода. Конденсатор начинает медленно разряжаться через большое сопротивление фильтра. Процесс разряда продолжается в течение всего времени закрытия диода (до точки ), при этом напряжение на конденсаторе, а значит, и на выходе детектора уменьшается. Начиная с точки , процесс повторяется.

Внутреннее сопротивление открытого диода значительно меньше сопротивления фильтра. Поэтому заряд конденсатора происходит быстрее, чем разряд, и конденсатор заряжается в каждом полупериоде входного напряжения почти до его амплитудного значения. Следовательно, напряжение на конденсаторе, а значит, и выходное напряжение повторяет по форме огибающую входного сигнала с определенным уровнем пульсаций.

Величина пульсаций определяется качеством фильтрации и зависит от постоянной времени фильтра , т.е. от времени заряда и разряда конденсатора. Для того чтобы детектирование осуществлялось с минимальными искажениями, требуется соблюдение определенного условия, связывающего постоянную времени фильтра с периодом несущего колебания и периодом модулирующего сигнала. Это условие имеет вид . При несоблюдении хотя бы одного из этих неравенств напряжение на конденсаторе не совпадает по форме с огибающей входного сигнала (рис. 8.13,б)

В зависимости от амплитуды входного сигнала и вида характеристики нелинейного элемента различают два режима детектирования: квадратичный (режим слабых сигналов) и линейный (режим больших сигналов). В первом режиме работа детектора происходит в пределах нелинейного участка его характеристики, аппроксимируемой полиномом второй степени. Во втором режиме работа детектора происходит на линейном участке характеристики, что позволяет применить кусочно-линейную аппроксимацию.

 

а. Квадратичное детектирование

 

При малом входном сигнале (десятки милливольт) работа детектора происходит в пределах нижнего сгиба вольт-амперной характеристики нелинейного элемента (рис. 8.14,а), которая с достаточной для практики точностью аппроксимируется полиномом второй степени .

 

 

Рис. 8.14. Квадратичное (а) и линейное (б) детектирование

 

Если на вход детектора в этом режиме поступает амплитудно-модулированный сигнал вида , то ток нелинейного элемента равен

.

Высокочастотные составляющие с частотами и не проходят через низкочастотный фильтр на выходе детектора. Полезная информация содержится в низкочастотной составляющей, равной . Пропорциональность данной составляющей квадрату огибающей амплитудно-модулированного сигнала определило название детектора в этом режиме – квадратичный детектор.

Для АМ-сигнала с тональной модуляцией низкочастотная составляющая спектра тока будет равна.

.

В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеется составляющая с частотой , которая должна быть выделена низкочастотным фильтром.

Для выделения этой составляющей низкочастотный фильтр должен быть узкополосным. Если же модуляция не тональная, и частота модулирующего сигнала изменяется в пределах от до , то фильтр должен иметь полосу пропускания , т.е. быть полосовым низкочастотным фильтром.

Постоянная составляющая тока отфильтровывается с помощью разделительного конденсатора, включаемого последовательно в цепь после детектора. Составляющая с частотой обусловливает нелинейные искажения полезного сигнала, которые тем больше, чем больше коэффициент модуляции и меньше постоянная времени фильтра.

Степень нелинейных искажений принято характеризовать коэффициентом нелинейных искажений, который определяется выражением

,

где – амплитуды гармонических составляющих тока нелинейного элемента.

В рассматриваемом случае .

Следовательно, коэффициент нелинейных искажений квадратичного детектора при детектировании АМ-сигнала с тональной модуляцией зависит от коэффициента модуляции . Для малых коэффициент нелинейных искажений невелик, для он может достичь величины 0,25, что представляет собой значительную величину. Уменьшение глубины модуляции с целью снижения искажений не выгодно с энергетической точки зрения.

При детектировании квадратичным детектором сложного сигнала спектр тока нелинейного элемента будет содержать комбинационные частоты в низкочастотной части спектра, которые будут пропускаться полосовым фильтром низкой частоты. Это приведет к увеличению искажений полезного сигнала.

Таким образом, выходной сигнал детектора при работе в режиме слабых сигналов пропорционален квадрату амплитуды АМ-сигнала. Именно поэтому, а также из-за значительных нелинейных искажений избегают такого режима детектирования в приемных трактах, применяя усиление до детектора.

В случае необходимости детектирования слабых сигналов применяют детекторы, построенные на основе операционных усилителей (ОУ).

Такие детекторы (рис. 8.15,а) выполняют операции детектирования и усиления. Операционный усилитель инвертирует и усиливает входное напряжение. Поэтому во время положительных полупериодов диод открыт, а диод закрыт. Благодаря этому, напряжение , а выходное напряжение усилителя отсутствует, т.е. . Во время отрицательных полупериодов диод закрыт, а диод открыт. При этом выходное напряжение усилителя равно . Оно представляет собой инвертированные и усиленные отрицательные полупериоды входного напряжения (рис. 8.15,б).

 

Рис. 8.15. Амплитудный детектор на ОУ

 

Если на вход детектора поступает напряжение АМ-сигнала, то в спектре имеются низкочастотные составляющие, которые обеспечивают формирование на выходе низкочастотного фильтра сигнал , по форме совпадающий с модулирующим сигналом.

 

б. Линейное детектирование

 

Нелинейные искажения, свойственные квадратичному детектору, могут быть уменьшены, если детектор будет работать с использованием линейной части характеристики диода. При этом принципиальная схема линейного детектора ничем не отличается от схемы квадратичного детектора. Только амплитуда входного напряжения должна быть такой (порядка 1…1,5 В), чтобы рабочий участок располагался на линейном участке характеристики нелинейного элемента (см. рис. 8.14,б). При этом можно воспользоваться кусочно-линейной аппроксимацией характеристики диода.

Как видно из рисунка, ток диода представляет собой периодическую последовательность импульсов, модулированных по амплитуде. Напряжение на выходе детектора создается только постоянной составляющей тока, которая в данном случае не будет постоянной в полном смысле этого слова. Она будет изменяться по закону модуляции входного сигнала. Таким образом, выходной сигнала детектора будет равен

.

.

Учитывая, что входной АМ-сигнал равен и при условии, что угол отсечки является постоянной величиной (это будет показано ниже), получаем

, (8.2)

или .

Таким образом, выходное напряжение детектора в этом режиме линейно зависит от амплитуды входного сигнала, если угол отсечки – постоянная величина. Отсюда и название детектора – линейный детектор.

Покажем, что величина угла отсечки определяется только параметрами детектора и не зависит от амплитуды входного сигнала.

Известно, что

, .

Учитывая (8.2), получаем

. (8.3)

В свою очередь, . Отсюда

. (8.4)

Приравняв (8.3) и (8.4) и разделив правую и левую часть на , получаем

. (8.5)

Крутизна ВАХ диода – это по существу величина, обратная внутреннему сопротивлению открытого диода. Таким образом, данное уравнение позволяет определить графическую зависимость отношения от угла отсечки (рис. 8.16).

Рис. 8.16. Влияние угла отсечки на выбор сопротивлений и

 

Из графиков и полученного выражения следует, что угол отсечки не зависит от амплитуды входного сигнала. Его величина определяется только величиной произведения . Чем меньше угол отсечки, тем больше отношение . Данный результат используется для определения параметров фильтра и диода.