Метод второго порядка

 

В качестве численного метода нелинейного программирования второго порядка рассмотрим метод Ньютона для задачи

 

(3.5.45)

 

где – выпуклое замкнутое множество, функция дважды непрерывно дифференцируема на . Пусть – некоторое начальное приближение. Если известно -е приближение , то приращение функции в точке можно представить в виде

 

 

где – матрица вторых производных (матрица Гессе) функции , вычисленных в точке . Возьмем квадратичную часть этого приращения

 

(3.5.46)

 

и определим вспомогательное приближение из условий

 

(3.5.47)

 

Следующее -е приближение будем искать в виде

 

(3.5.48)

 

В зависимости от способа выбора величины в (3.5.48) можно получить различные варианты метода (3.5.46) – (3.5.48), называемого методом Ньютона.

Если в (3.5.48) принять , то в этом случае, как следует из (3.5.48), , т.е. условие (3.5.47) сразу определяет следующее -е приближение. Иначе говоря,

 

(3.5.49)

 

В частности, когда , в точке минимума функции ее производная обращается в нуль, т.е.

 

(3.5.50)

 

Это значит, что на каждой итерации метода (3.5.46) – (3.5.49) нужно решать линейную систему алгебраических уравнений (3.5.50) относительно неизвестной разности . Если матрица этой системы – невырожденная, то из (3.5.50) получим

 

 

Метод Ньютона для решения задачи (3.5.45) обычно применяют в тех случаях, когда вычисление производных не представляет особых трудностей и вспомогательная задача (3.5.47) решается достаточно просто. Достоинством метода Ньютона является высокая скорость сходимости.