Основные теоретические положения
Прямая может лежать в плоскости, пересекаться с плоскостью и быть параллельна плоскости.
Если прямая параллельна проецирующей плоскости, то на эпюре будут параллельны одноименные проекции прямой и следа плоскости.
Если прямая параллельна плоскости общего положения, то она должна быть параллельна какой-либо прямой вэтой плоскости.
Точка пересечения прямой и проецирующей плоскости на эпюре определяетсякак точка пересечения одноименных проекций и следа плоскости.
Точка пересечения прямой и плоскости общего положения определяется с помощью метода вспомогательных секущих плоскостей в следующем порядке:
а) через прямую нужно провести вспомогательную проецирующую плоскость;
б) построить линию пересечения вспомогательной плоскости с заданной;
в) точка пересечения заданной прямой и построенной линии и будет искомой.
Если прямая перпендикулярна плоскости, то она должна быть перпендикулярна двум пересекающимся прямым плоскости, например, главным линиям плоскости, горизонтали h и фронтали f . Тогда проекции прямой l(l1,l2), перпендикулярной плоскости, будут перпендикулярны соответствующим проекциям главных линий плоскости: l1^h1, l2^f2.
Две плоскости взаимно перпендикулярны, если в одной из них можно провести прямую, перпендикулярную другой плоскости.
Две прямые взаимно перпендикулярны, если одна из них лежит в плоскости, перпендикулярной второй прямой.