Интервалы прогноза по линейному уравнению регрессии.
В прогнозных расчётах по уравнению регрессии определяется уравнение не является реальным, для есть ещё стандартная ошибка . Поэтому интервальная оценка прогнозного значения
Выразим из уравнения
, то есть стандартная ошибка зависит и ошибки коэффициента регрессии b,
. Из теории выборки известно, что . Используя в качестве оценки остаточную дисперсию на одну степень свободы , получим формулу расчёта ошибки среднего значения переменной y: .
Ошибка коэффициента регрессии: .
В прогнозных расчетах по уравнению регрессии определяется уравнение как точечный прогноз при , то есть путём подстановки в уравнение регрессии . Однако точечный прогноз явно нереален.
- формула стандартной ошибки предсказываемого значения y при заданных , характеризует ошибку положения линии регрессии. Величина стандартной ошибки , достигает min при , и возрастает по мере того, как «удаляется» от в любом направлении. То есть чем больше разность между и x, тем больше ошибка , с которой предсказывается среднее значение y для заданного значения .
Можно ожидать наилучшие результаты прогноза, если признак - фактор x находится в центре области наблюдений х и нельзя ожидать хороших результатов прогноза при удалении от .
Если же значение оказывается за пределами наблюдаемых значений х, используемых при построении ЛР, то результаты прогноза ухудшаются в зависимости то того, насколько отклоняется от области наблюдаемых значений фактора х. Доверит. интервалы при .
На графике доверительной границы представляет собой гиперболы, расположенные по обе стороны от линии регрессии.
Две гиперболы по обе стороны от ЛР определяют 95%-ные доверительные интервалы для среднего значения y при заданном значении x.
Однако фактические значения y варьируют около среднего значения . Индивидуальные значения y могут отклоняться от на величину случайной ошибки , дисперсия которой оценивается как остаточная дисперсия на одну степень свободы . Поэтому ошибка предсказываемого индивидуального значения y должна включать не только стандартную ошибку , но и случайную ошибку.
Средняя ошибка прогнозируемого индивидуального значения y составит:
.
При прогнозировании на основе УР следует помнить, что величина прогноза зависит не только от стандартной ошибки индивидуального значения y, но и от точности прогноза значений фактора x.
Его величина может задаваться на основе анализа других моделей исходя из конкретной ситуации, а также из анализа динамики данного фактора.
Рассмотренная формула средней ошибки индивидуального значения признака y( ) может быть использована также для оценки существенности различия предсказываемого значения исходя из регрессионной модели и выдвинутой гипотезы развития событий.