КОНТРОЛЬНАЯ РАБОТА № 5 (4)

 

1. Для получения колец Ньютона используют плоско-выпуклую линзу с радиусом кривизны 12,5 м. Освещая линзу монохроматическим светом, определили, что расстояние между четвертым и пятым светлыми кольцами равно 0,5 мм. Найти длину волны падающего света.

2. На каком расстоянии от экрана находятся мнимые источники света (λ = 0,6 мкм), расстояние между которыми 0,4 мм, а ширина светлых интерференционных полос на экране 2 мм? Решение пояснить рисунком.

3. Определить толщину глицериновой пленки, если при освещении ее белым светом, падающим под углом 45°, она в отраженном свете кажется красной? Длина волны красных лучей 0,63 мкм. Принять = 5.

4. На тонкий стеклянный клин нормально падает монохроматический свет. Наименьшая толщина клина, с которой видны интерференционные полосы, 0,1 мкм, расстояние между полосами 5 мм. Определить длину волны падающего света и угол между поверхностями клина.

5. Какую наименьшую толщину должна иметь пленка из скипидара, если на нее под углом 30° падает белый свет и она в проходящем свете кажется желтой? Длина волны желтых лучей 0,58 мкм.

6. На пленку толщиной 0,16 мкм под углом 30° падает белый свет. Определить показатель преломления пленки, если в проходящем свете пленка кажется фиолетовой. Длина волны фиолетовых лучей 0,4 мкм. Принять = 1. Из какого вещества сделана пленка?

7. Расстояние между двумя когерентными источниками света 2 мм, они удалены от экрана на 2 м. Найти длину волны, излучаемую когерентными источниками, если расстояние на экране между третьим и пятым минимумами интерференционной картины 1,2 см.

8. На тонкий стеклянный клин падает нормально свет с длиной волны 0,5 мкм, расстояние между соседними темными интерференционными полосами в отраженном свете 0,3 мм. Определить угол между поверхностями клина.

9. Определить показатель преломления материала, из которого изготовлен клин, преломляющий угол которого 3·10-4 рад, если на один сантиметр приходится 22 интерференционные полосы максимума интенсивности света. Длина волны нормально падающего монохроматического света равно 0,415 мкм.

10. На тонкую пленку из глицерина падает белый свет под углом 30°. В отраженном свете пленка кажется светло-зеленой, длина волны этого цвета 0,540 мкм. Каким будет казаться цвет пленки в отраженном свете, если свет будет падать под углом 60°?

11. На непрозрачную пластинку с узкой щелью падает нормально плоская монохроматическая световая волна. Угол отклонения лучей, соответствующий первому дифракционному максимуму, равен 30°. Определить ширину щели, если длина волны падающего света 0,6 мкм.

12. Определить длину световой волны спектральной линии, изображение которой, даваемое дифракционной решеткой в спектре третьего порядка, совпадает с изображением линии λ = 0,38 мкм в спектре четвертого порядка.

13. На грань кристалла каменной соли падает пучок параллельных рентгеновских лучей с длиной волны 0,15 нм. Под каким углом к атомной плоскости наблюдается дифракционный максимум третьего порядка, если расстояние между атомными плоскостями кристалла 0,285 нм.

14. На щель шириной 0,1 мм падает нормально пучок параллельных лучей белого света (0,38—0,76) мкм. На экране, отстоящем от щели на расстоянии 1 м, наблюдается дифракционная картина. Найти ширину дифракционного максимума второго порядка.

15. Пучок параллельных лучей монохроматического света падает нормально на дифракционную решетку. Угол дифракции для спектра второго порядка 10°. Каким будет угол дифракции для спектра пятого порядка?

16. Какую разность длин волн может «разрешить» дифракционная решетка в спектре второго порядка для фиолетовых лучей (0,4 мкм), если период решетки 2 мкм, ширина ее 2 см.

17. Дифракционная решетка имеет 800 штрихов на одном миллиметре, на нее нормально падает монохроматический свет с длиной волны 0,585 мкм. Определить, как изменится угол дифракции для спектра второго порядка, если взять решетку с 500 штрихами на одном миллиметре.

18. На кристалл кальцита, расстояние между атомными плоскостями которого 0,3 нм, падает пучок параллельных рентгеновских лучей, длина волны которых 0,147 нм. Определить, под каким углом к поверхности кристалла (угол скольжения) должны падать рентгеновские лучи, чтобы наблюдался дифракционный максимум первого порядка.

19. На узкую щель нормально падает монохроматический свет. Угол дифракции для спектра второго порядка 2°. Скольким длинам волн падающего света равна ширина щели?

20. Две дифракционные решетки имеют одинаковую ширину 4 мм, но разные периоды, равные 2 и 4 мкм. Определить и сравнить их наибольшую разрешающую способность для желтой линии натрия (λ = 0,589 нм).

21. Луч света переходит из воды в алмаз, так что луч, отраженный от границы раздела этих сред, оказывается максимально поляризован. Определить угол между падающим и преломленным лучами.

22. Угол между плоскостями поляризации николей равен 30º, Интенсивность света, прошедшего такую систему, уменьшилась в 5 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения света в каждом из николей, считая их одинаковыми.

23. Раствор сахара с концентрацией 300 кг/м3, налитый в стеклянную трубку, поворачивает плоскость поляризации света, проходящего через раствор на угол 65°. Другой раствор, налитый в такую же трубку, поворачивает плоскость поляризации на 50°. Определить концентрацию этого раствора.

24. На поверхность стекла падает пучок естественного света под углом 45°. Найти с помощью формул Френеля степень поляризации отраженного света.

25. На кристалл алмаза падает пучок естественного света под углом Брюстера. Определить степень поляризации отраженного и преломленного света, используя формулы Френеля.

26. Луч света переходит из кварца в жидкость, частично отражаясь, частично преломляясь. Отраженный луч максимально поляризован при угле падения 43° 6'. Определить показатель преломления жидкости и скорость распространения света в ней.

27. Угол между плоскостями поляризации двух поляроидов 70°. Как изменится интенсивность прошедшего через них света, если этот угол уменьшить в 5 раз?

28. Определить постоянную вращения оптически активного вещества, если при введении его между двумя николями, плоскости поляризации которых параллельны, интенсивность света, прошедшего эту систему, уменьшилась в 5 раз. Толщина слоя оптически активного вещества 4 мм. Потерями света на отражение и поглощение пренебречь.

29. На поверхность глицерина падает пучок естественного света под углом 55,°77. Найти с помощью формул Френеля степень поляризации отраженного света.

30. При прохождении естественного света через два николя, угол между плоскостями поляризации которых 45°, происходит ослабление света. Коэффициенты поглощения света соответственно в поляризаторе и анализаторе равны 0,08 и 0,1. Найти, во сколько раз изменилась интенсивность света после прохождения этой системы.

31. Показатель преломления флюорита для света с длинами волн 670,8; 656,3; 643,8 нм равен соответственно 1,4323; 1,4325 и 1,4327. Вычислить фазовую и групповую скорости света вблизи длины волны 656,3 нм.

32. В черенковский счетчик, заполненный водой, влетает пучок релятивистских электронов с энергией 3,5 МэВ. Определить угол отклонения от оси конуса фиолетовых лучей, длина волны которых 0,4 мкм.

33. Коэффициент линейного поглощения некоторого вещества равен 0,25 м-1. Определить толщину слоя этого вещества, ослабляющего интенсивность монохроматического света в 5 раз.

34. Какую ускоряющую разность потенциалов должен был бы пройти протон в глицерине, чтобы наблюдать черенковское свечение?

35. Показатель преломления сильвина для света с длинами волн 303,4; 214,4 и 185,2 нм равен соответственно 1,5440; 1,6618 и 1,8270. Вычислить фазовую и групповую скорости света вблизи длины волны 214,4 нм,

36. Определить, как изменится интенсивность монохроматического света при прохождении через слои поглотителя; толщина первого слоя 10 мм, второго 20 мм, коэффициенты линейного ослабления соответственно равны 0,1 и 0,3 см-1.

37. В черепковском счетчике из каменной соли пучок релятивистских протонов излучает в красной области спектра (0,67 мкм) в конусе с раствором 98° 38'. Определить кинетическую энергию протонов.

38. Найти коэффициент линейного поглощения вещества, для которого толщина слоя половинного ослабления интенсивности монохроматического света равна 2,46 м,

39. Показатель преломления воды при 20ºС для света с длинами волн 670,8, 656,3 и 643,8 нм равен соответственно 1,3308, 1,3311 и 1,3314. Вычислить отношение фазовой к групповой скорости света вблизи длины волны 656,3 нм.

40. Для каких частиц возникает черепковское излучение при их движении в воде, когда их кинетическая энергия превышает 972 МэВ?

41. На какую длину волны приходится максимум энергии излучения, если температура абсолютно черного тела равна 500 К? Во сколько раз возрастает суммарная мощность излучения, если температура увеличивается до 1300 К?

42. Принимая спектр Солнца за спектр излучения абсолютно черного тела, определить мощность суммарного (интегрального) (т. е. приходящегося на все длины волн) излучения, если максимум испускательной способности соответствует длине волны 0,48 мкм. Радиус Солнца считать равным 6,5·105 км.

43. Температура абсолютно черного тела равна 3600 К. Определить длину волны, на которую приходится максимум энергии в спектре излучения, и спектральную плотность энергетической светимости, приходящуюся на эту длину волны.

44. Начальная температура тела 150 °С. Определить, на сколько нужно повысить температуру абсолютно черного тела, чтобы мощность суммарного излучения увеличилась в 5 раз.

45. Какое количество теплоты в 1 с нужно подводить к свинцовому шарику радиусом 4 см, чтобы поддерживать его температуру при 27°С, если температура окружающей среды — 23°С. Считать, что тепло теряется только вследствие излучения. Поглощательная способность свинца равна 0,6.

46. Принимая спектр Солнца за спектр излучения абсолютно черного тела, определить плотность потока энергии у поверхности Земли. Считать, что расстояние от Земли до Солнца 1,5·108 км, радиус Солнца 6,5·105 км. Максимум испускательной способности соответствует длине волны 0,48 мкм.

47. Определить количество теплоты, теряемое поверхностью расплавленной платины при 1770°С за 1 мин, если площадь поверхности 100 см2. Коэффициент поглощения принять равным 0,8.

48. Максимум энергии излучения абсолютно черного тела приходится на длину волны 450 нм. Определить температуру и энергетическую светимость тела.

49. Абсолютно черное тело было нагрето от температуры 100 до 300 °С. Найти, во сколько раз изменилась мощность суммарного излучения при этом.

50. Температура абсолютно черного тела понизилась с 1000 до 850 К. Определить, как и на сколько при этом изменилась длина волны, отвечающая максимуму распределения энергии.

51. Определить давление на черную поверхность, создаваемое светом с длиной волны 0,4 мкм, если ежесекундно на 1 см2 поверхности падает 6·1016 фотонов.

52. Световое давление, испытываемое зеркальной поверхностью площадью 1 см2, равно 10-6 Па. Найти длину волны монохроматического света, если ежесекундно падают 5·1012 фотонов.

53. На зачерненную поверхность нормально падает монохроматический свет с длиной волны 0,45 мкм. Найти число фотонов, падающих на площадку 1 м2 в 1 с, если давление, производимое этим светом, равно 10-5 Па.

54. Принимая спектр Солнца за спектр абсолютно черного тела, определить давление солнечных лучей на земную поверхность при условии, что максимальная испускательная способность соответствует длине волны 0,48 мкм. Радиус Солнца считать равным 6,5·105 км. Коэффициент отражения солнечных лучей равен нулю. Расстояние от Земли до Солнца 1,5·108 км.

55. Определить силу светового давления на зеркальную поверхность площадью 100 см2, если интенсивность светового потока, падающего нормально на эту поверхность, равна 2,5 кВт/м2.

56. Энергетическая освещенность поверхности Земли равна 1,4 кВт/м2. Определить давление, обусловленное светом, принимая коэффициент отражения равным 0,6.

57. Давление света на зеркальную поверхность, расположенную на расстоянии 2 м от лампочки нормально к падающим лучам, равно 0,5·10-8 Па. Определить мощность лампочки, расходуемую на излучение.

58. Энергетическая освещенность поверхности, освещаемой нормально падающими лучами равна 3 кВт/м2. Вычислить световое давление, если поверхность черная.

59. Свет (λ = 0,6 мкм), падая нормально на зеркальную поверхность, оказывает давление 10~6 Па. Определить число фотонов, падающих на 1 м2 поверхности.

60. Определить длину волны монохроматического света при нормальном падении его на зеркальную поверхность площадью 1 м2, если ежесекундно падает 5·1018 фотонов,

61. Фотон с энергией 1,3 МэВ в результате эффекта Комптона был рассеян на свободном электроне. Определить комптоновскую длину волны рассеянного фотона, если угол рассеяния фотона 609.

62. Какую часть энергии фотона составляет энергия, пошедшая на работу выхода электрона из фотокатода, если красная граница для материала фотокатода равна 540 мкм, кинетическая энергия фотоэлектрона 0,5 эВ?

63. В результате комптоновского эффекта электрон приобрел энергию 0,5 МэВ. Определить энергию падающего фотона, если длина волны рассеянного фотона равна 0,025 нм.

64. При облучении светом цинкового шарика, удаленного от других тел, шарик зарядился до потенциала 4,3 В. Определить граничную длину световой волны излучателя.

65. Фотон с импульсом 1,02 МэВ/с (с — скорость света) в результате эффекта Комптона был рассеян на угол 30°. Определить импульс рассеянного фотона.

66. Облучение литиевого фотокатода производится фиолетовыми лучами, длина волны которых 400 мкм. Определить скорость фотоэлектрона, если красная граница фотоэффекта для лития равна 520 мкм.

67. Фотон при соударении со свободным электроном испытал комптоновское рассеяние под углом 60°. Определить долю энергии, оставшуюся у фотона.

68. Кинетическая энергия электронов, выбитых из цезиевого фотокатода, равна 3 эВ. Определить, при какой максимальной длине волны света выбивается этот электрон?

69. Фотон с энергией 0,51 МэВ в результате эффекта Комптона был рассеян на 180°. Определить энергию электрона отдачи.

70. Фотон с длиной волны 0,2 мкм вырывает с поверхности натрия фотоэлектрон, кинетическая энергия которого 2 эВ. Определить работу выхода и красную границу фотоэффекта.