I. Тема занятия. 2 страница

Большую опасность представляют некоторые органические соединения металлов (ртути, свинца, олова, мышьяка).

В группу газообразных поллютантантов входят вещества, находящиеся в газообразном состоянии при нормальной температуре и атмосферном давлении, а также пары летучих жидкостей. Среди веществ, представляющих наибольшую опасность: монооксид и диоксид углерода (СО, СО2), сероводород (Н2S), оксиды азота (NxOy), озон (О3), оксиды серы (SxOy) и др.

Органические соединения естественного происхождения

Основными природными источниками органических соединений являются залежи угля, нефти, вулканическая деятельность. Помимо предельных и непредельных алифатических углеводородов, большое токсикологическое значение среди представителей группы имеют полициклические ароматические углеводороды (ПАУ). Эти вещества также выделяются при неполном сгорании органических материалов и обнаруживаются в дыме при горении древесины, угля, нефти, табака, а также в каменноугольной смоле и жареной пище.

Поскольку отдельные ПАУ являются канцерогенами, их рассматривают как опасные экотоксиканты.

Синтетические токсиканты

Подавляющее большинство известных химических соединений получены синтетическим путем. Нет такой области деятельности, в ходе которой современный человек не контактировал бы с химическими веществами. Некоторые группы веществ, не смотря на их широчайшее использование, в силу высокой биологической активности, требуют особого внимания со стороны токсикологов. Это, прежде всего, пестициды, органические растворители, лекарства, токсичные компоненты различных производств, побочные продукты химического синтеза и т.д.

Пестициды

Пестициды – вещества, предназначенные для борьбы с животными и растениями-вредителями с целью повышения урожайности и сохранения материальных ценностей, созданных человеком. В отличие от других поллютантов пестицидами умышленно обрабатывают окружающую среду для того, чтобы уничтожить некоторые виды живых организмов. Наиболее желательным свойством пестицидов, в этой связи, является избирательность их действия в отношении организмов-мишеней. Однако селективность действия подавляющего большинства пестицидов не является абсолютной, поэтому многие вещества представляют большую или меньшую опасность для человека. Основной риск, связанный с использованием пестицидов, обусловлен их накоплением в окружающей среде и перемещением по пищевым цепям, вплоть до человека. Достаточно часты случаи острого отравления пестицидами. Поскольку организмы «вредителей» адаптируются к действию химических веществ, во всем мире постоянно синтезируются и внедряются в практику десятки и сотни новых соединений.

Самым известным хлорорганическим инсектицидом является ДДТ. Хотя это вещество синтезировано еще в 1874 году, его инсектицидные свойства были обнаружены лишь в 1939 году швейцарским химиком Паулем Мюллером, удостоенным за это открытие десять лет спустя Нобелевской премии. ДДТ широко использовался для борьбы с вредителями, однако сейчас, в силу отрицательных токсикологических свойств, запрещен к производству и применению в большинстве развитых стран. Среди других известных хлорорганических пестицидов следует назвать метоксихлор (близкий аналог ДДТ), мирекс, алдрин, хлордан, линдан.

Фосфорорганические инсектициды (ФОИ) представляют собой по большей части эфиры фосфорной и тиофосфорной кислот. В настоящее время это наиболее широко используемые пестициды. Они токсичнее хлорорганических инсектицидов, но менее стойки в окружающей среде и потому менее опасны с точки зрения экологии. Широкое исследование этих веществ началось в 1930х годах в лаборатории Герхарда Шрадера в Германии. Токсичность ФОС зависит от строения алкильных радикалов при атоме фосфора. Для млекопитающих и человека производные фосфорной кислоты значительно токсичнее, чем тиофосфорной. Для насекомых имеет место обратная зависимость. Первым широко используемым пестицидом из этой группы был тетраэтилпирофосфат (ТЭПФ). Из-за высокой токсичности для млекопитающих он был позже заменен на другие соединения. Среди наиболее известных ФОИ: паратион, диазинон, хлорофос, карбофос, дисульфотион, малатион. Среди ФОС обнаружены не только эффективные пестициды, но и вещества чрезвычайно токсичные для человека. Под руководством того же Шрадера на основе ФОС в 1940х годах были получены первые фосфорорганические боевые отравляющие вещества (ФОС), в частности, табун. Все ФОС – нейротоксиканты, нарушающие проведение нервных импульсов в центральных и периферических холинэргических синапсах.

Близким ФОС по механизму токсического действия на организм насекомых и млекопитающих является класс инсектицидов из группы карбаматов. К наиболее известным пестицидам этой группы относятся: карбарил (севин), пропоксур (байгон), альдикарб (темик). Среди карбаматов найдены и вещества обладающие чрезвычайной токсичностью для лабораторных животных, например, производные бис(диметилкарбамокси бензил)алкан диметил галида (ЛД50 для кроликов составляет 0,005 мг/кг). Такие вещества могут применяться как боевые отравляющие вещества.

Гербициды

Это вещества, предназначенные для борьбы с растениями, в частности, сорными травами. Динитрофенол, динитро-орто-крезол, пентахлорфенол используются, как контактные гербициды. Хлорфенолы применяют и как фунгициды для защиты древесины от поражения грибами. Печальную известность, после войны США против Вьетнама, получили производные феноксиуксусной кислоты (2,4-Д и 2,4,5-Т), входившие в состав так называемой «оранжевой смеси», использовавшейся американцами в качестве дефолианта. Эти вещества практически не токсичны для человека, однако, содержавшийся в качестве примеси 2,3,7,8,-тетрахлордибензодиоксин вызывал поражение людей. Кроме того это вещество обладает свойствами иммунотоксиканта, тератогена, мутагена и канцерогена. Другими известным гербицидами являются паракват, дикват, атразин и т.д.

Родентициды

Чрезвычайно опасны для человека средства борьбы с грызунами – родентициды. Производные фторуксусной кислоты, варфарин, стрихнин, соли таллия, используемые для этой цели – высоко токсичные соединения.

Органические растворители

Органические растворители используют повсеместно: на производствах, в сельском хозяйстве, в быту. К числу растворителей относятся вещества, с близкими физико-химическими свойствами. Это жидкости, плохо растворяющиеся в воде и хорошо в жирах, не диссоциирующие в водных растворах с образованием ионов. Последнее свойство послужило поводом для объединения их в группу под общим названием «неэлектролиты» (Н.В. Лазарев). Обычные органические растворители принадлежат к одной из следующих химических групп:

1. Алифатические углеводороды (пентан, гексан, октан и др.);

2. Галогенированные алифатические углеводороды (хлороформ, четыреххлористый углерод; метиленхлорид; трихлорэтилен; винилхлорид и т.д.);

3. Алифатические алкоголи (этанол, метанол и т.д.);

4. Гликоли и эфиры гликолей (этиленгликоль, пропиленгликоль, диоксан и т.д.);

5. Ароматические углеводороды (бензол, толуол, ксилол).

Для всех органических растворителей характерна близость токсикологических свойств: они угнетают функции центральной нервной системы (наркотическое действие).

Коммерческие растворители, как правило, представляют собой смесь соединений и включают азот- и серо-органические соединения, а также бензин и некоторые масла. Растворители используют для производства красителей, лаков, клеев и т.д. Поэтому отравления этими продуктами нередко обусловлены действием именно растворителей. Токсикоманическое пристратие к вдыханию клеев, также связано с привыканием к состоянию, формирующемуся вследствие действия органических растворителей на ЦНС.

Лекарства, пищевые добавки, косметика

Количество лекарств, выпускаемых в мире, составляет десятки тысяч тон веществ многих сотен наименований. Практически любое лекарственное средство обладает токсичностью и при неправильном его использовании и у людей с повышенной чувствительностью может вызвать неблагоприятные эффекты. В настоящее время ни один медикамент не разрешается к применению до исчерпывающего изучения его переносимости (токсичности), определения оптимальных доз и схем использования по программам, утвержденным специальными государственными структурами. Тем не менее число отравленных лекарствами неизменно растет. Причиной тому наиболее часто является неконтролируемое со стороны врача использование препаратов, суицидные попытки. Первое место, как причина самоотравления, занимают психофармакологические средства, такие как барбитураты (барбитал, фенобарбитал), бензодиазепины (диазепам), трицыклические антидепрессанты (имипрамин) и т.д.

Столь же тщательную проверку на токсичность, как и лекарственные препараты, проходят косметические средства и пищевые добавки (пищевые красители, антиоксиданты, предотвращающие прогоркание жиров, консерванты, ароматические вещества, вкусовые добавки и т.д.). Острые отравления этими веществами практически не отмечаются. Однако у особо чувствительных лиц возможны неблагоприятные эффекты, связанные с сенсибилизацией организма, особенно при длительном воздействии.

 

ТОКСИКОКИНЕТИКА

Токсикокинетика – раздел токсикологии, в рамках которого изучаются закономерности, а также качественные и количественные характеристики поступления (резорбции), распределения, биотрансформации ксенобиотиков в организме и их элиминации (выведения).

С позиций токсикокинетики организм представляет собой сложную систему, состоящую из большого числа отделов: кровь, ткани, внеклеточная жидкость, внутриклеточное содержимое, с различными свойствами, отделенных друг от друга биологическими барьерами. К числу барьеров относятся клеточные и внутриклеточные мембраны, гистогематические барьеры (например, гематоэнцефалический), покровные ткани (кожа, слизистые оболочки). Кинетика веществ в организме – это, по сути, преодоление ими биологических барьеров и распределение между отделами.

Процесс проникновения токсикантов в организм (резорбция)

Термином «резорбция» обозначают процесс проникновения вещества из окружающей среды или ограниченного объема внутренней среды организма в лимфо- и кровоток. Некоторые вещества оказывают действие на месте аппликации, на барьерные ткани: кожу, слизистые оболочки, не проникая в кровоток (процесс резорбции отсутствует). Такое действие называется местным. Многие токсиканты способны как к местному, так и резорбтивному действию.

В настоящее время известно, что подавляющее большинство веществ могут проникать в организм через один или несколько тканевых барьеров: кожные покровы, дыхательные пути, желудочно-кишечный тракт, хотя скорость резорбции при этом различна. В зависимости от того, какой из барьеров преодолевает вещество, говорят об ингаляционном, чрезкожном или пероральном пути поступления токсиканта в организм.

Путь проникновения вещества в организм во многом определяется его агрегатным состоянием, локализацией в элементах окружающей среды, площадью и свойствами «входных ворот» (таб. 3).

Таблица 3

Площадь «всасывающих» поверхностей тела человека (м2)

Кожа 1,2 – 2 Толстая кишка 0,5 – 1,0
Полость рта 0,02 Прямая кишка 0,04 – 0,07
Желудок 0,1 – 0,2 Полость носа 0,01
Тонкий кишечник Легкие

 

Так, вещество в форме пара имеет очень высокую вероятность резорбироваться в дыхательных путях, но то же вещество, растворенное в воде, сможет попасть во внутренние среды организма преимущественно через желудочно-кишечный тракт и с меньшей вероятностью через кожу.

Способность многих химических веществ переходить из одного агрегатного состояния в другое и локализоваться вследствие этого в разных средах, порой затрудняет предсказание, каким будет основной способ резорбции токсиканта. Например, многие летучие вещества, способные действовать ингаляционно, вместе с тем растворяются и в воде и в продовольствии и, следовательно, могут действовать различными путями (боевые отравляющие вещества: иприт, люизит, зоман; металлы и их соединения и т.д.).

Факторы, влияющие на резорбцию

Скорость и характер резорбции веществ определяется рядом факторов. Их можно отнести к одной из следующих групп:

Ø свойства организма (морфологические особенности органа, через который осуществляестя резорбция, площадь резорбирующей поверхности, кровоснабжение органа, общие характеристики (пол, возраст, упитанность);

Ø количественные характеристики токсического вещества (время контакта с веществом, концентарция, доза);

Ø характеристика токсиканта (молекулярная масса, химическое строение, физико-химические свойства);

Ø модифицирующие факторы (температура, влажность воздуха, форма воздействия – пар, аэрозоль, раствор, степень наполнения желудка, кишечника, состояние кожных покровов и т.д.).

Поступление токсикантов через кожу

Площадь поверхности кожных покровов взрослого человека составляет в среднем 1,6 м2. Анатомически кожа состоит из нескольких слоев.

Проникновение веществ через кожу осуществляется тремя путями: через эпидермис, через сальные и потовые железы, через волосяные фолликулы. Для хорошо проникающих через кожу низкомолекулярных и липофильных соединений основным является трансэпидермальный путь, поскольку относительная суммарная площадь поверхности двух других путей мала и составляет менее 1% от общей площади поверхности кожи. Для веществ, медленно всасывающихся через кожные покровы, трансфолликулярный и трансгландулярный пути могут иметь существенное значение.

На скорость резорбции влияют многочисленные факторы, среди которых важнейшие:

Ø площадь и локализация резорбирующей поверхности;

Ø интенсивность кровоснабжения кожи;

Ø свойства токсиканта.

Количество вещества, проникающего через кожу, пропорционально площади контакта вещества и кожи. С увеличением площади, увеличивается и количество всасываемого вещества.

Анатомическая локализация области контакта с веществом существенно влияет на скорость резорбции. Наибольшей способностью к резорбции обладает кожа мошонки и подмышечной впадины.

Кровоснабжение кожи слабее многих других органов, например мышц. При активации кровотока усиливается резорбция токсикантов способных проникать через кожные покровы. В этой связи, действие таких факторов как раздражающие вещества, ультрафиолетовое облучение, температурное воздействие и т.д., сопровождающееся расширением сосудов, открытием анастомозов, усиливает резорбцию.

На процесс резорбции в наибольшей степени влияют физико-химические свойства токсикантов и, прежде всего, способность растворяться в липидах (липофильность). Липофильные агенты (например, ФОС, иприты, хлорированные углеводы и др.) достаточно легко преодолевают кожный барьер. Гидрофильные агенты, и особенно заряженные молекулы, практически не проникают через кожу.

Повреждение рогового слоя эпидермиса и жировой смазки кожи (кератолитическими средствами, органическими растворителями) приводит к усилению резорбции токсикантов. Механическое повреждение кожи с образованием дефектов, особенно обширных, лишает ее барьерных свойств. Увлажненная кожа лучше всасывает токсиканты, чем сухая.

Поступление токсикантов через слизистые оболочки

Слизистые оболочки, не зависимо от того, образованы они многослойным, однослойным эпителием, кубическими или плоскими клетками, лишены рогового слоя и жировой пленки на поверхности. Они покрыты водной, иногда с примесью слизи, пленкой. Их функция состоит в осуществлении обмена веществом между организмом и внешней средой. Эти отличия от кожи объясняют, почему многие вещества достаточно легко проникают через слизистые оболочки. Резорбтивная способность для слизистых разных анатомических областей близка, хотя структурные особенности и топография некоторых образований лежат в основе наблюдаемых различий.

Резорбция веществ через слизистые определяется главным образом следующими факторами:

Ø агрегатным состоянием вещества (газ, аэрозоль, взвесь, раствор);

Ø дозой и концентрацией токсиканта;

Ø видом слизистой оболочки, ее толщиной;

Ø продолжительностью контакта;

Ø интенсивностью кровоснабжения анатомической структуры;

Ø дополнительными факторами (параметры среды, степень наполнения желудка и т.д.).

На таблице 4 представлены некоторые характеристики слизистых оболочек различных анатомических образований человека.

Таблица 4

Характеристика слизистых оболочек

Область Тип эпителия Площадь поверхности (м2) Время контакта с веществом
Полость рта Многослойный плоскоклеточный 0,02 произвольное
Желудок Однослойный цилиндрический 0,1 – 0,2 минуты – часы
Тонкая кишка Однослойный цилиндрический ворсинчатый часы
Толстая кишка Однослойный цилиндрический складчатый 0,5 – 1,0 часы
Прямая кишка Однослойный цилиндрический; однослойный плоскоклеточный; многослойный плоскоклеточный 0,04 – 0,07 часы

 

Резорбция в ротовой полости

Проникать через слизистые могут лишь вещества, находящиеся в полости рта в молекулярной форме. Поэтому растворы лучше резорбируются, чем взвеси. Оттекающая от слизистой полости рта кровь поступает в верхнюю полую вену и потому всосавшееся вещество попадает непосредственно в сердце, малый круг кровообращения, а затем и общий кровоток. В отличие от других способов проникновения через слизистые желудочно-кишечного тракта, при резорбции в ротовой полости, всосавшиеся токсиканты распределяются в организме минуя печень.

Резорбция в желудке

В целом ксенобиотики плохо всасывается в желудке, хотя его слизистая оболочка мало отличается от слизистой других отделов желудочно-кишечного тракта. В основе резорбции лежит механизм простой диффузии. Жирорастворимые соединения достаточно легко проникают через слизистую желудка в кровь. Особенностью резорбции в желудке является то, что липидный барьер могут преодолеть лишь токсиканты в форме незаряженных молекул. Многие соединения (неэлектролиты), их молекулы не несут заряда, и они легко проходят через слизистую желудка (дихлорэтан, четыреххлористый углерод и т.д.).

Сильные кислоты и щелочи (серная, соляная, азотная кислоты, NaOH, KOH) в любом растворе полностью диссоциированы и потому переходят в кровь лишь в случае разрушения слизистой оболочки (химический ожег). Для слабых кислот кислая среда способствует превращению вещества в неионизированную форму, для слабых оснований низкие значения рН (высокие концентрации водородных ионов в среде) способствует превращению веществ в ионизированную форму.

Поскольку неионизированные молекулы более липофильны они легче проникают через биологический барьер. Поэтому в желудке лучше абсорбируются слабые кислоты.

В растворе около 50% молекул HCN находится в диссоциированной форме (ион CN-). Если рН смещается в кислую сторону (попадание в желудок), то практически все молекулы, переходят в форму недиссоциированного соединения, хорошо растворяющегося в липидах. Поэтому слизистая желудка практически не является барьером для синильной кислоты, а прием цианидов через рот сопровождается быстрым превращением их в кислоту и немедленной резорбцией.

Алкалоид стрихнин, практически полностью ионизирован в кислой среде желудка и потому, при пероральном введении, интоксикация этим веществом не наблюдается до попадания его в кишечник.

Необходимым условие резорбции вещества в желудке является его растворимость в желудочном соке. Потому практически не растворимые в воде вещества, даже в случае высокой растворимости в жирах, здесь не всасываются.

Если токсикант поступает в желудок с пищей, то возможно взаимодействие с ее компонентами: растворение в жирах и воде, абсорбция белками и т.д. Поскольку градиент концентрации ксенобиотика при этом снижается, уменьшается и скорость диффузии в кровь. Хорошо известно, что резорбция алкоголя в желудке значительно замедляется при приеме с жирной пищей. Из пустого желудка вещества всасываются лучше чем из наполненного.

Резорбция в кишечнике

Кишечник, в силу особенностей строения, является одним из основных мест всасывания химических веществ (таб. 5).

Таблица 5

Некоторые характеристики слизистой тонкой кишки человека

Структуры Количественные характеристики Площадь поверхности (м2)
Тонкая кишка Длина – 4000 мм Диаметр – 25 мм 0,3
Складки слизистой Высота – 8 мм Количество – 650 1,0
Крипты Высота – 1 мм Диаметр – 0,16 мм Количество 10 млн. 6,0
Ворсинки Высота – 1 мкм Диаметр – 0,1 мкм Количество – 3 1014

 

Перистальтика кишечника обеспечивает перемешивание содержимого, вследствие чего поддерживается высокая концентрация веществ на границе контакта гумуса с клетками слизистой оболочки.

Молекулы-субстраты обмена веществ и структурные элементы живого (глюкоза, аминокислоты, электролиты, нуклеотиды и т.д.) резорбируются в кишечнике посредством активного транспорта. Ксенобиотики – структурные аналоги этих молекул, также могут поступать в организм с помощью этих механизмов. Таким же способом пенетрируют гликозиды, среди которых немало высокотоксичных веществ (амигдалин, дигитоксин, буфотоксин и др.). Однако основным является механизм пассивной диффузии веществ через эпителий.

В целом резорбция веществ в кишечника подчиняется тем же законам, что и в желудке, хотя имеются существенные особенности.

Проникновение веществ через слизистую оболочку существенно зависит от размеров молекул. Как правило, с увеличением молекулярной массы проникновение соединений через слизистую уменьшается.

Всасывание ионов зависит от их строения и величины заряда. В то время как одновалентные ионы (Cl-, NO2-, NO3-, Na+, K+, Tl+) легко проникают через слизистую, для ионов с большим зарядом (Mg2+, Pb2+, Fe3+, SO42-) этот процесс затруднен. Исключение составляют ионы кальция.

Все отделы кишечника принимают участие в резорбции ксенобиотиков. С наивысшей скоростью всасывание происходит в тонкой кишке.

Для веществ, поступающих через рот, время пребывания их в желудке в целом отсрочивает резорбцию, поэтому скорость перехода веществ из желудка в двенадцатиперстную кишку имеет решающее значение. Холодные растворы быстрее покидают желудок. В этой связи холодные растворы токсикантов порой оказываются более токсичными, чем теплые.

Резорбция в толстой кишке происходит сравнительно медленно. Этому способствует не только меньшая площадь поверхности слизистой этого отдела, но и, как правило, более низкая, в сравнении с вышележащими отделами, концентрация токсикантов в просвете кишки.

Резорбция слизистыми глаз

Проникновение токсикантов через слизистую глаз подчиняется общим закономерностям. Прежде всего, скорость процесса определяется физико-химическими свойствами вещества (растворимостью в липидах и воде, зарядом молекулы, размерами молекулы). Липидный барьер роговицы глаза представляет собой тонкую структуру многослойного плоского эпителия, покрытого снаружи роговым слоем. Через барьер легко проникают жирорастворимые вещества и даже растворимые преимущественно в воде соединения. При попадании токсиканта на роговицу большая его часть смывается слезой и распространяется по поверхности склеры и конъюнктивы глаз.

Резорбция в легких

Легкие – орган, предназначенный для осуществления обмена веществом, в частности жизненно важными газами, между организмом и окружающей средой. Помимо вдыхаемого О2 и другие вещества, находящиеся в форме газа или пара, могут легко проникать через легкие в кровоток. Для этого токсикант должен преодолеть лишь тонкий капиллярно-альвеолярный барьер. Благоприятным условием всасывания веществ является также большая площадь поверхности легких, составляющая у человека в среднем 70 м2.

Продвижение газов по дыхательным путям сопряжено с их частичной адсорбцией на поверхности трахеи и бронхов. Чем хуже растворяется вещество в воде, тем глубже проникает оно в легкие.

Ингаляционно в организм могут поступать не только газы и пары, но и аэрозоли, которые также достаточно быстро могут всасываться в кровь.

Для резорбции вдыхаемый газ должен вступить в контакт с альвеолярной поверхностью легких. Вентиляция обеспечивает очень быструю доставку газа из окружающей среды к поверхности альвеолярных мембран. Одновременно с вентиляцией легких осуществляются и другие процессы: растворение газа в стенке альвеолы, диффузия газа в кровь, конвекция в кровяном русле, диффузия в ткани.

В тот момент, когда парциальное давление газа в окружающем, а затем и альвеолярном воздухе становиться ниже, чем в крови (пострадавшего выносят из зоны заражения), процесс меняет направление и газ из организма устремляется в просвет альвеол и во внешнюю среду. С помощью форсированной вентиляции легких можно обеспечить быстрое снижение концентрации газообразного вещества в циркулирующей крови (и тканях). Эту возможность используют в токсикологии при оказании помощи отравленным некоторыми газообразными или летучими веществами, предлагая пострадавшим ингалировать карбоген (воздух с повышенным содержанием СО2), стимулирующий вентиляцию.

Резорбция аэрозолей. Аэрозоль – это смесь фаз. Смесь газовой фазы и мельчайших частиц жидкости называется туманом. Смесь газовой фазы и мельчайших твердых частиц – дымом. При ингаляции аэрозолей глубина их проникновения в дыхательные пути зависит от размера частиц. Обычно размеры частиц в аэрозоли колеблются от 0,5 до 15 мкм и зависят от концентрации распыленного в воздухе вещества: чем выше концентрация, тем крупнее частицы. Крупные частицы накапливаются на слизистой верхних отделов дыхательных путей, частицы среднего диаметра – в более глубоких отделах, и, наконец, мельчайшие частицы могут достичь поверхности альвеол.

У здорового человека задержка аэрозоля в дыхательных путях составляет около 70 – 75%.

Резорбция из тканей

При действии веществ на раневые поверхности или введении в ткань (например, подкожно или внутримышечно) с помощью специальных устройств, возможно их поступление либо непосредственно в кровь, либо сначала в ткани, а уже затем в кровь. При этом в ткань могут проникать высокомолекулярные (белковые), водо-растворимые и даже ионизированные молекулы. Скорость резорбции определяется свойствами тканей и ксенобиотиков.

Распределение токсических веществ в организме

После резорбции в кровь вещество в соответствии с градиентом концентрации распределяется по всем органам и тканям.

Распределение – динамический процесс, его направленность во многом определяется соотношением содержания ксенобиотика во внешней среде, на месте аппликации, в крови и тканях. По большей части вещества распределяются в организме неравномерно. Неодинаково и время пребывания ксенобиотиков в различных органах и тканях. Некоторые избирательно накапливаются в том или ином органе, ткани, даже клетках определенного типа. Так, ботулотоксин избирательно связывается с нервными окончаниями холинэргических нервных волокон, 6-гидроксидофамин – накапливается в катехоламинэргических нейронах ЦНС, свинец, стронций – в костях и т.д. Причем если время нахождения первых двух токсикантов в соответствующих клетках насчитывает несколько часов – суток, то последние агенты могут сохраняться в костной ткани годами. Однако строение, физические свойства и химически состав клеток во многом одинаковы, поэтому такое неравномерное распределение ксенобиотика в организме или избирательное накопление в отдельных тканях встречается не так часто.

Факторы влияющие на распределение токсикантов в организме

Проникновение веществ через стенку капилляра

Водорастворимое вещество, циркулирующее в крови, не диффундирует в ткани, если радиус молекулы превышает радиус пор стенки капилляров. Как правило, это случается с высокомолекулярными соединениями: токсикантами белковой природы и т.д. Такое же исключительно внутрисосудистое распределение характерно для низкомолекулярных веществ, если в крови они связываются с белками плазмы крови. Как уже указывалось, в различных органах стенки капилляров имеют различные свойства, а, следовательно, и различную проницаемость для химических веществ.

Значение особенностей кровоснабжения органов

Распределение токсикантов в первые минуты – часы после их поступления в организм, до достижения стационарной фазы, в значительной степени определяется характером кровоснабжения органов.

Конечное распределение токсикантов, длительно сохраняющихся в организме, не зависит от особенностей кровоснабжения органов.

Проникновение через клеточную мембрану

Токсиканты, хорошо растворяющиеся в липидах легко проникают через клеточные мембраны и попадают внутрь клеток.

Водо-растворимые соединения могут попасть в клетки лишь через поры клеточных мембран. Размер пор клеточных мембран значительно меньше пор стенок капилляров. Поэтому среди водорастворимых веществ можно выделить такие, которые проходят через стенки капилляров, но не проникают внутрь клеток, накапливаясь в экстрацеллюляроном пространстве тканей. К таким, в частности, относятся инулин, манит, ионы SO42-, SCN- и т.д.