Сцепление арматуры с бетоном. Длина анкеровки.

Сцепление арматуры с бетоном обеспечивается следующими факторами:

1. Химическое склеивание арматуры с бетоном.

2. Адгезия бетона и арматуры.

3. Сопротивление выступов на теле арматурного стержня упирающихся в бетонные консоли между данными выступами.

При этом, на долю последнего фактории приходится примерно 75% усилия сцепления бетона с арматурой, поэтому остальными факторами пренебрегают, кроме того, сами эти факторы имеют сильный разброс и сильно зависят от технологии возведения (например, температуры бетона и арматуры, водоцементного отношения и т.д.).

Длина анкеровки – необходимая длина заделки арматурного стержня в бетон, при которой усилие сцепления данного стержня с бетоном будет не менее предельного сопротивления стержня по материалу (по пределу текучести).

Длина анкеровки зависит от следующих факторов:

1. Класс бетона. Чем более прочным является бетон, тем сильнее сопротивляется перемещению заключенной в нем арматуры. Фактически длина анкеровки зависит от прочности бетона на растяжение, но с учетом того, что между классом бетона по прочности на сжатие и прочностью бетона на растяжение существует зависимость, принято считать, что длина анкеровки зависит от класса бетона по прочности на сжатие, хотя строго говоря, это не совсем верно.

2. Класс арматуры. Чем выше класс стали арматурного стержня, тем большее усилие способен обеспечить данный стержень по материалу (по пределу текучести), что приводит к необходимости большей заделки арматурного стержня в бетон.

3. Диаметр арматуры. Чем выше класс стали арматурного стержня, тем большее усилие способен обеспечить данный стержень по материалу (по пределу текучести), что приводит к необходимости большей заделки арматурного стержня в бетон. Можно говорить о том, что сопротивление стержня пропорционально площади его поперечного сечения, а следовательно второй степени диаметра, в то время как усилие сцепления стержня пропорционально площади поверхности сцепления, т.е. первой степени диаметра. Таким образом, при прочих равных факторах, с увеличением диаметра необходимая длина заделки возрастает пропорционально первой степени диаметра (или просто диаметру).

4. Профиль поверхности арматурных стержней. При наличии периодического профиля арматуры, бетон лучше сопротивляется перемещению арматурного стержня, так как для такого перемещения необходим срез консольных участков бетона в зонах между выступами на теле арматурного стержня.

5. Напряженное состояние бетона в направлении, перпендикулярном оси арматурного стержня. Данное напряженное состояние может возникать, например, на опорах изгибаемых элементах, где конец элемента обжимается опорной реакцией (точнее главными сжимающими напряжениями). Некоторое обжатие бетона повышает сцепление бетона с арматурой, т.к. возрастает усилие трения арматуры по бетону, кроме того для арматуры периодического профиля увеличивается несущая способность бетонных консолей между арматурными выступами. При малом обжатии бетона (менее 1/4 от расчетного сопротивления) влияние данного фактора не велико и расчетом не учитывается, при слишком большом усилии обжатия бетона (более 3/4 от расчетного сопротивления) начинается локальное разрушение бетона и данным фактором пренебрегают. Таким образом, данный фактор учитывают в расчете, если сжатие бетона в направлении перпендикулярном оси рассматриваемого стержня находится в диапазоне от четверти до трех четвертей от расчетного сопротивления сжатию.

6. Напряженное состояние бетона и арматуры. При вдавливании арматуры в бетон происходит расширение арматурного стержня, которому препятствует окружающий бетон, вследствие этого фактора при вдавливании арматуры в бетон сцепление выше, чем при выдергивании. Таким образом, при вдавливании арматурного стержня в бетон необходимая длина заделки будем меньше, чем при выдергивании. Можно выделить следующие виды напряженного состояния:

6.1 Растянутая арматура в растянутом бетоне. Данное напряженное состояние может возникать, например, в изгибаемых элементах без предварительного напряжения, где растяжение (например, нижней зоны в шарнирно-опертых балках вызывает растяжение одновременно и бетона, и арматуры).

6.2 Растянутая арматура в сжатом бетоне. Данное напряженное состояние может возникать, например, в предварительно напряженных элементах, где усилие от предварительного напряжения арматуры обжимает окружающий бетон.

6.3 Сжатая арматура в сжатом бетоне. Данное напряженное состояние может возникать, например, в сжатых элементах, где внешние усилия приводят одновременно к сжатию и бетона и арматуры.

6.4 Сжатая арматура в растянутом бетоне. Данное напряженное состояние может возникать, например, вследствие усадки бетона, что приводит к его растяжению и сжатию заключенной в нем арматуры при отсутствии внешних усилий, однако данное напряженное состояние является крайне редким, кроме того, усилия от усадки как правило, не учитываются в расчетах напрямую, в связи с чем при определении длины анкеровки данный вид напряженного состояния не рассматривается.