Нестрогая аналогия
В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суждение обозначить через 0, а истину через 1, то степень вероятности выводов по нестрогой аналогии лежит в интервале от 1 до 0, т. e. 1>Р(а)>0,где Р(а)- вероятность заключения по нестрогой аналогии.
Примерами нестрогой аналогии являются, в частности, следующие: испытание модели корабля в бассейне и заключение, что настоящий корабль будет обладать теми же параметрами, испытание прочности моста на модели, затем построение настоящего моста. Если строго выполнены все правила
построения и испытания модели, то этот способ умозаключения может приближаться к строгой аналогии и давать достоверное заключение, однако чаще заключение бывает вероятным. Разница в масштабах между моделью и прототипом (самим сооружением) иногда бывает не только количественной, но и качественной. Не всегда также можно учесть различие между лабораторными условиями (испытания) модели и естественными условиями работы самого сооружения, поэтому возникают ошибки.
Примеры таких аналогий многочисленны. Возрождение старых идей при создании новой техники - сейчас закономерный процесс. В настоящее время, например, парусные суда и дирижабли снова выходят на сцену, но они связаны с прошлой техникой лишь по отдаленной аналогии, так как создаются теперь по последним техническим достижениям и оснащены современным оборудованием и ЭВМ.
Человек в целях управления часто использует аналоговые машины. На корабле, чтобы в шторм максимально снять действие бортовой качки, устанавливаются специальные ласты, движением которых управляет аналоговая машина. Решая дифференциальное уравнение движения волн, она как бы заранее “предвидит” набегающую волну и с помощью ласт корректирует положение корабля. Аналоговые машины успешно применяются и для управления полетом самолета, в том числе при посадке, выполняя функции пилота при густом тумане над аэродромом.
В математических доказательствах используется только строгая аналогия, а при решении задач (арифметических, геометрических и др.) применяется либо алгоритм, либо нестрогая аналогия с уже решенными однотипными задачами. Значительное число интересных примеров использования аналогий в математике содержится в книге Д. Пойа “Математика и правдоподобные рассуждения”.
Аналогия в математике используется и тогда, когда, пытаясь решить предложенную задачу, мы начинаем с другой, более простой. Например, при решении задачи из стереометрии мы находим подобную задачу в планиметрии; в частности, решая задачу о диагонали прямоугольного параллелепипеда, мы обращаемся к задаче о диагонали прямоугольника. В геометрии имеется аналогия
между кругом и шаром. Существуют две аналогичные теоремы: “Из всех плоских фигур равной площади наименьший периметр имеет круг” и “Из всех тел равного объема наименьшую поверхность имеет шар”. Д. Пойа пишет: “...Сама природа расположена в пользу шара. Дождевые капли, мыльные пузыри, Солнце, Луна, наша Земля, планеты шарообразны или почти шарообразны”1.
Д. Пойа приводит забавную аналогию из области биологии:
когда в холодную ночь кот приготовляется ко сну, он поджимает лапы, свертывается и таким образом делает свое тело насколько возможно шарообразным, очевидно, для того, чтобы сохранить тепло, сделать минимальным его выделение через поверхность своего тела. “Кот, - продолжает Д. Пойа, - не имеющий ни малейшего намерения уменьшить свой объем, пытается уменьшить свою поверхность. Он решает задачу о теле с данным объемом и наименьшей поверхностью, делая себя возможно более шарообразным”2.
Эту аналогию можно использовать как на уроках математики, так и на уроках биологии.
Для повышения степени вероятности выводов по нестрогой аналогии следует выполнить ряд условий:
1) число общих признаков должно быть возможно большим;
2) необходимо учитывать степень существенности сходных признаков, т.е. сходные признаки должны быть существенными. Аналогия на основе сходства несущественных признаков типична для ненаучного и детского мышления. Дети могут съесть ядовитые ягоды на основе их внешнего сходства со съедобными. Но иногда и на основе чисто внешнего признака можно сделать открытие, как это было в случае открытия алмазов в Якутии;
3) общие признаки должны быть по возможности более разнородными;
4) необходимо учитывать количество и существенность пунктов различия. Если предметы различаются в существенных признаках, то заключение по аналогии может оказаться ложным;
5) переносимый признак должен быть того же типа, что и сходные признаки.
______________________
'Пойа Д. Математика и правдоподобные рассуждения. М., 1975. С. 187.
2Там же.