Процесс разработки модели
Это процесс последовательной (и возможно, неоднократной) схематизации или идеализации исследуемого явления.
Адекватность модели - это ее соответствие тому реальному физическому процессу (или объекту), который она представляет.
Для разработки модели физического процесса необходимо определить:
• область или границы ее применения (по времени, пространству и другим физическим характеристикам);
• степень (глубину) детализации;
• физические ограничения;
• требуемую точность результатов;
• константы и переменные определяющие состояние процесса;
• управляемые переменные;
• неуправляемые переменные (воздействия, возмущения);
• параметры, характеризующие объект.
Иногда используется подход, когда применяется модель небольшой полноты, носящая вероятностный характер. Потом с помощью ЭВМ производится ее анализ и уточнение.
Проверка модели начинается и проходит в самом процессе ее построения, когда выбираются или устанавливаются те или иные взаимосвязи между ее параметрами, оцениваются принятые допущения. Однако после сформирования модели в целом надо проанализировать ее с некоторых общих позиций.
Математическая основа модели (т. е. математическое описание физических взаимосвязей) должна быть непротиворечивой именно с точки зрения математики: функциональные зависимости должны иметь те же тенденции изменения, что и реальные процессы; уравнения должны иметь область существования не менее диапазона, в котором проводится исследование; в них не должно быть особых точек или разрывов, если их нет в реальном процессе, и т. д. Уравнения не должны искажать логику реального процесса.
Модель должна адекватно, т. е. по возможности точно, отражать действительность. Адекватность нужна не вообще, а в рассматриваемом диапазоне.
Расхождения между результатами анализа модели и реальным поведением объекта неизбежны, так как модель - это отражение, а не сам объект.
На рис. 3. представлено обобщенное представление, которое используется при построении математических моделей.
Рис. 3. Аппарат для построения математических моделей
При использовании статических методов наиболее часто используется аппарат алгебры и дифференциальные уравнения с независимыми от времени аргументами.
В динамических методах таким же образом используются дифференциальные уравнения; интегральные уравнения; уравнения в частных производных; теория автоматического управления; алгебра.
В вероятностных методах используются: теория вероятностей; теория информации; алгебра; теория случайных процессов; теория Марковских процессов; теория автоматов; дифференциальные уравнения.
Важное место при моделировании занимает вопрос о подобии модели и реального объекта. Количественные соответствия между отдельными сторонами процессов, протекающих в реальном объекте и его модели, характеризуются масштабами.
В целом подобие процессов в объектах и модели характеризуется критериями подобия. Критерий подобия [2] - это безразмерный комплекс параметров, характеризующий данный процесс. При проведении исследований в зависимости от области исследований применяют различные критерии. Например, в гидравлике таким критерием является число Рейнольдса (характеризует текучесть жидкости), в теплотехнике - число Нусссельта (характеризует условия теплоотдачи), в механике - критерий Ньютона и т. д.
Считается, что если подобные критерии для модели и исследуемого объекта равны, то модель является правильной.
К теории подобия примыкает еще один метод теоретического исследования - метод анализа размерностей, который основан на двух положениях:
• физические закономерности выражаются только произведениями степеней физических величин, которые могут быть положительными, отрицательными, целыми и дробными; размерности обоих частей равенства, выражающего физическую размерность, должны быть одинаковы.