I. Аксиомы событий
1. Задаётся множество элементарных событий Ω, называемое пространством элементарных событий.
2. Рассматривается некоторая непустая совокупность S подмножеств множества Ω, называемых событиями (в общем случае бесконечного пространства Ω, мы рассматриваем не все подмножества Ω, а лишь некоторые классы этих подмножеств).
К совокупности S предъявим следующие требования
1. Если множества (в конечном или счётном числе) суть события, то их объединение тоже является событием.
2. Если множество А является событием, то его дополнение ( до Ω ) есть тоже событие.
Из аксиом 1,2 легко следует, что само Ω является (достоверным) событием и если есть события, то их пересечение (произведение) снова будет событием.
В этой терминологии два события А и В, не имеющие
( как подмножество) общих элементов, будут несовместными.
Событие, совпадающее с пустым множеством Ø, будет невозможным событием.
Таким образом, в нашей терминологии: результатом опыта является одно и только одно элементарное событие . Далее, событие А считается наступившим, если результатом опыта явилось элементарное событие ω, принадлежащее А.