Диодный тиристор

Он имеет три p-n-перехода, причем два из них П1 и П3 работают в прямом направлении, а средний П2 в обратном направлении. Крайнюю область р- называют анодом, а крайнюю область n-катодом. Тиристор можно представить в виде эквивалентной схемы, состоящей из двух транзисторов Т1 n-p-n-типа, и Т2 p-n-p-типа, соединенных между собой. Получается, что переходы П1 и П3 являются эмиттерными переходами этих транзисторов, а переход П2 в обоих транзисторах работает как коллекторный переход.

Область базы Б1 транзистора Т1 одновременно является коллекторной областью к2 Т2, а база Б2 транзистора Т2 одновременно служит коллекторной областью к1 транзистора Т1 (рисунок 1.49). Соответственно этому коллекторный ток iк1 = iб2, а iк2 = iб1. Обычно тиристоры делают из Li, концентрация примеси в базовых областях (средних областях) значительно меньше, чем в эмиттерных (крайних областях).

Рисунок 1.49 – Структура и эквивалентная схема тиристора

 

Рассмотрим ВАХ тиристора (рисунок 1.50).

При увеличении Uпр, ток невелик и растет медленно, что соответствует участку ОА. В этом режиме тиристор можно считать закрытым. На сопротивление коллекторного перехода П2 влияют два взаимно противоположных процесса. С одной стороны, повышение обратного напряжения на этом переходе увеличивает его сопротивление т. к. под влиянием обратного процесса основные носители уходят в разные стороны от границы, т. е. переход П2 все больше основными носителями. Но, с другой стороны, повышение прямых напряжений на эмиттерных переходах П1 и П3 усиливает инжекцию носителей, которые переходят к переходу П2, обогащают его и уменьшают его сопротивление. До т. А при котором напряжение (десятки или сотни вольт), называемом напряжением включения Uвкл, влияние обоих процессов уравновешивается, а затем даже очень малое повышение подводимого напряжения создает перевес второго процесса и сопротивление перехода П2 начинает уменьшаться. Тогда возникает лавинообразный процесс быстрого отпирания тиристора. Этот процесс объясняется следующим образом.

Ток резко возрастает (это участок АБ на характеристике), т. к. увеличивается напряжение на П1 и П3 уменьшает сопротивление на П2 и напряжение на нем, за счет чего еще больше возрастают напряжения на П1 и П2, а это, в свою очередь, приводит к еще большему возрастанию тока, уменьшению сопротивления П2 и т. д. в результате такого процесса устанавливается режим, напоминающий режим насыщения транзистора большой ток при малом напряжении (участок БВ). Ток в этом режиме, когда тиристор открыт, определяется главным образом сопротивлением нагрузки Rн, включенным последовательно с тиристором. За счет возникшего большого тока почти все напряжение источника питания падает на нагрузке Rн.

В открытом состоянии из-за накопления больших зарядов около П2 напряжение на нем прямое, что как известно, характерно для коллекторного перехода в режиме насыщения. Поэтому полное напряжение на тиристоре складывается из трех небольших прямых напряжений на переходе и четырех так же небольших падений напряжения в n- и р- областях. Т. к. каждое из этих напряжений составляет доли вольта, то общее напряжение на открытом тиристоре обычно не превышает нескольких вольт и, следовательно, тиристор в этом состоянии имеет малое сопротивление.

Диодный тиристор характеризуется следующими параметрами:

1. Imax – максимальное значение прямого тока (т. В), при котором на приборе будет небольшое напряжение Uоткр.

2.

Рисунок 1.50 – ВАХ тиристор
Iуд – ток удерживания (т. Б), который возникает при резком уменьшении прямого тока, при этом напряжение резко возрастает, т. е. тиристор переходит скачком обратно в закрытое состояние, соответствующее участку ОА.

3. tвкл и tвыкл – время выключения и время включения тиристора tвкл обычно не более единиц микросекунд tвыкл, связанное с рекомбинацией носителей доходит до десятков микросекунд. Поэтому тиристоры могут работать только на правильно низких частотах.

4. Собщ. – общая емкость, которая складывается из емкостей всех p-n-переходов.

5. Uобр.max – обратное максимальное напряжение.