Адиабатический процесс. Уравнение Пуассона. Первое начало термодинамики применительно к адиабатическому процессу.

Адиабатический процесс

Это процесс, при котором отсутствует теплообмен ( ) между системой и окружающей средой. К адиабатическим можно отнести все быстропротекающие процессы.

Из ПНТ ( ) для адиабатического процесса следует, что

, (20)

т.е. внешняя работа совершается за счет уменьшения внутренней энергии системы. Учитывая, что , найдем работу адиабатического расширения газа от объема V1 до V2 ( при этом температура газа уменьшается от Т1 до Т2): . Можно показать, что для адиабатического процесса .

Это уравнение называют уравнением адиабаты, g=СP/CV=(i+2)/i - показатель адиабаты, i – число степеней свободы молекулы газа.

Адиабатический процесс:

где γ – показатель адиабаты.

– уравнение Паусона.

 

Из ПНТ Q=dU+A=0

dU=U2-U1

Q=U2-U1+A=0

dU=-A, U1-U2=A

Внешняя работа совершается за счёт внутренней энергии.

Если A>0, то U уменьшается и наоборот.

 

Уравнение адиабатического процесса для газа переменных p и V называется уравнением Пуассона.

- p1/p2= (V2/V1)^y

-T1/T2=(V2/V1)^y-1

-P^((1-y)/y)T=const