Алкалоиды

К алкалоидам относят различные вещества растительного происхождения, которые содержат азотистый гетероцикл, обладающие основными свойствами и специфическим действием на животный организм. Например, атропин расширяет зрачок, возбуждает нервную систему, морфин успокаивает ее, хинин действует на плазмодии малярии. Благодаря специфичности физиологического действия многие алкалоиды стали лекарственными веществами.

Различают шесть групп алкалоидов со следующими важнейшими представителями: пиридиновая (никотин), хинолиновая (хинин, стрихнин), изохинолиновая (папаверин, кураре), фенантреновая (кодеин, морфин), тропиновая (атропин) и пуриновая (кофеин).

Кроме того, алкалоиды подразделяют на бескислородные (никотин, анабазин и др.) и кислородсодержащие (хинин, атропин и др.). Все алкалоиды горьки на вкус, вращают пло­скость поляризации влево, плохо растворимы в воде, используются в виде солей (хлоридов или сульфатов), которые лучше растворимы. Описано более 500 алкалоидов, изучено строение многих из них, некоторые синтезированы.

Чаще всего алкалоиды встречаются у высших растений (маковых, бобовых, лютиковых); алкалоиды могут находиться в различных органах: никотин – в листьях табака, хинин – в коре дерева. Растения, содержащие 1-2 % алкалоида, считают хорошим сырьем для переработки. В растениях алкалоиды связаны (в виде солей лимонной, щавелевой и других кислот). Выделение их из растительного материала весьма затруднительно. Очищают выделенные алкалоиды перекристаллизацией, распознают с помощью цветных реакций.

Никотин содержится в листьях и семенах табака (от 1 до 7% в виде соединений с яблочной и лимонной кислотами), имеет вид бесцветной маслянистой жидкости, кипящей при 247 °С, обладает левым вращением, ядовит, добывается из отходов табачной промышленности, применяется как инсектицид.

Изомер никотина - анабазин имеет вид бесцветного масла, кипящего при 276 °С, очень ядовит, применяется для борьбы с насекомыми (в виде сернокислой соли), чрезвычайно токсичен.

Хинин содержится в коре хинного дерева, кислородсодержащий алкалоид, кристаллизуется с тремя молекулами воды, плохо растворим в ней, обладает левым вращением, применяется как антималярийное лекарство (в виде хлористоводородной или сернокислой соли). Сернокислый хинин с бромной водой и водным аммиаком дает зеленое окрашивание. Синтезирован в 1945 г.

Примером алкалоида изохинолинового ряда является папаверин, применяющийся в качестве эффективного противосудорожного средства.

 

 

Атропин содержится в белладонне, семенах дурмана, белене. Это кристаллическое вещество, плавящееся при 115-116 °С, ядовит, вызывает расширение зрачка, несмотря на высокую токсичность, применяется при лечении глазных заболеваний.

Кокаин содержится в листьях кока, имеет вид бесцветных призм, плавящихся при 98 °С. Известен как одно из первых используемых в медицине местноанестезирующих и наркотических средств.

Морфин был первым алкалоидом, выделенным в чистом виде (1806 г). Он был назван по имени сына бога сна и сновидений Морфея, его применяют как снотворное и обезболивающее средство.

Кодеин – метиловый эфир морфина, используется против кашля и в качестве обезболивающего средства.

Большим успехом органической химии явилось выделение и изучение антибиотиков – природных веществ, синтезируемых микроорганизмами и тормозящих размножение других микроорганизмов. Антибиотики применяются для лечения и предупреждения многих инфекционных заболеваний. Получены десятки антибиотиков, отличающихся как по химическому строению, так и по силе противобактериального действия. Среди них есть и сравнительно простые вещества класса хинонов и сложные гетероциклические соединения, вещества углеводного характера, полипептидные соединения. Наибольшее медицинское значение приобрели пенициллин, стрептомицин, грамицидин, синтомицин и биомицин.

Счастливая случайность позволила английскому бактериологу А. Флемингу в 1929 г. впервые наблюдать противомикробную активность пенициллина. Культуры стафилококка, выращивавшиеся на обычной питательной среде, называемой агаром случайно были заражены зеленой плесенью. Флеминг заметил, что по мере развития зеленой плесени стафилококковые палочки, находящиеся по соседству с плесенью, разрушались. Затем он обнаружил, что сама питательная среда, в которой развивалась плесень, не причиняла вреда лейкоцитам крови, и предположил, что содержащееся в плесени активное начало может быть использовано в качестве антисептика. Впоследствии было установлено, что плесень эта относится к виду Penicillium notatum, однако в то время возможность использования выделяемого ею вещества для лечения общих инфекционных заболеваний не была исследована.

За несколько лет до начала второй мировой войны X. Флори и

Е. Чейн в Оксфорде решили разобраться в причинах этого явления.

В 1940 г. они выделили натриевую соль пенициллина, содержащую

примеси. Им удалось показать, что полученное вещество обладает

замечательной противостафилококковой активностью. В начале 1941 г. пенициллин был впервые опробован на человеке – им был заболевший оксфордский полицейский – и начался путь этого антибиотика к славе.

Эра синтетических лекарств началась лавинообразным увеличением числа исследований во всем мире после опубликования в 1936 г. сообщения о том, что известная молекула сульфаниламида обладает почти сверхъестественной силой излечивать самые различные, часто смертельные инфекционные заболевания.

Молекула сульфаниламида поразительно проста. Как же действует эта небольшая молекула, метко убивающей бактерию и не приносящей никакого вреда живым клеткам?

Сульфаниламид убивает бактерии, включаясь в синтез фолиевой кислоты. Синтез фолиевой кислоты чрезвычайно важен для жизнедеятельности бактерий. Животные клетки сами не синтезируют фолиевую кислоту, однако она является необходимым компонентом в их «рационе».

Сульфаниламид мешает биосинтезу фолиевой кислоты, конкурируя с п-аминобензойной кислотой за включение в молекулу фолиевой кислоты. Структура сульфаниламида близка к структуре п-аминобензойной кислоты, что позволяет молекуле сульфаниламида «ввести в заблуждение» ферменты, отвечающие за связывание всех трех частей молекулы.

 

Таким образом, сульфаниламид занимает место п-аминобензойной кислоты, давая «ложную» молекулу фолиевой кислоты, которая, вероятно, не способна выполнять жизненные функции «истинной» фолиевой кислоты внутри бактерии. В этом заключается секрет противобактериальной активности сульфаниламида.