Основные числовые множества
N | {1,2,3,...,n} Множество всех натуральных чисел |
Z | {0, ±1, ±2, ±3,...} Множество целых чисел.Множество целых чисел включает в себя множество натуральных. |
Q | Множество рациональных чисел. Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1. Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической. |
R | Множество всех вещественных чисел. Иррациональные числа — это бесконечные непериодические дроби. К ним относятся: § число — отношение длины окружности к её диаметру; § число — названное в честь Эйлера и др.; Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел. |