Примеры.
1. y = x2 – 2x. Найти приближенно, с помощью дифференциала, изменение y (т.е. Δy), когда x изменяется от 3 до 3,01.
Имеем Δy≈dy=f'(x)·Δx.
f'(x)=2x – 2 ,f'(3)=4, Δx=0,01.
Поэтому Δy ≈ 4·0,01 = 0,04.
2. Вычислить приближенно значение функции в точке x = 17.
Пусть x0= 16. Тогда Δx = x – x0= 17 – 16 = 1, ,
.
Таким образом, .
3. Вычислить ln 0,99.
Будем рассматривать это значение как частное значение функции y=lnx при х=0,99.
Положим x0 = 1. Тогда Δx = – 0,01, f(x0)=0.
, f '(1)=1.Поэтому f(0,99) ≈ 0 – 0,01 = – 0,01.