Частотная передаточная функция
Если в передаточную функцию вместо оператора Лапласа подставить мнимую переменную Фурье , получим частотную передаточную функцию , которую называют просто частотной функцией. Ее можно представить в виде действительной и мнимой частей (компонент)
или в комплексной форме
,
где – модуль частотной функции, а – ее фаза.
Покажем связь между компонентами частотной функции и амплитудно–фазовой характеристикой (АФХ). Для этого на комплексной плоскости (рис. 6) отложим действительную и мнимую части. Если полученную точку А соединить с началом координат, получим вектор , длина (модуль) которого равен , а аргумент (угол, образованный этим вектором с действительной положительной полуосью) .
Таким образом , .
Рис. 6. Построение АФХ по компонентам частотной функции