Аналитический метод
Как видно, расчет по экспоненциальной функции дал для Новосибирской области большую численность на 1 января 2000 г., чем расчет по линейной функции. Это отражает большую скорость изменения в случае роста по экспоненте. Тем не менее для кратких периодов (не более 15 лет) применение обеих функций дает сходные результаты. Однако в случае, если имеет место уменьшение численности населения, как сейчас происходит в большинстве регионов России, то более предпочтительным является ислользо-
вание экспоненциальной функции, т.к. это гарантирует, что численность населения не станет отрицательной. Экстраполяционный метод применим только при отсутствии резких колебаний рождаемости, смертности и миграции.
Аналитический метод основан на том, что исходя из прошлой демографической динамики подбирается функция, наиболее близко ее описывающая. В принципе это может быть любая функция. Однако в любом случае эта функция носит эмпирический характер, и не существует никакого общего математического закона демографической динамики5.
Математические выражения, которые используют
ся для описания роста населения, являются по необ
ходимости эмпирическими; не может быть найде
но никакого закона роста населения, хотя некото
рые математические уравнения определялись имен
но как таковой закон. При построении уравнения или
кривой, соответствующих данным переписей насе
ления, в одном случае исходят из предположения,
что численность населения является полиномиаль
ной степенной функцией от времени:
Pt=a + bt+ct2 +dt3 +...,
где константы а, b, с, d, ...оцениваются с помощью подходящей техники, например, с помощью метода наименьших квадратов. Если оцениваются только константы а и b, то получаем просто линейную функцию; добавление других констант означает переход к квадратичной параболе или к параболам более высоких порядков. Например, Pritchett использовал кубическую параболу для данных переписей США с 1790 по 1880 год и экстраполировал данные о численности населения на будущее. Spiegelman M. Introduction to Demography. Cambridge, MA. 1968. P. 406.
Конкретный вид функции подбирается исходя из вида эмпирической кривой, а также гипотезы о связи численности населения с временем как независимой переменной. Один класс такого рода гипотез приведен во вставке. Если же предположить, что изменение численности населения за бесконечно малый промежуток времени является функцией численности населения, то получают другие математические выражения.
Одним из них является экспоненциальная функция с ненулевым постоянным членом, или рост (убыль) населения в геометрической прогрессии, рассмотренный выше в этом параграфе, а также в главе 3.
Другим примером такого рода функций является широко применяемая в перспективном исчислении численности населения логистическая* функция (кривая Ферхюлста-Пйрла-Рида), особенность которой состоит в том, что ее приращение уменьшается по мере роста численности населения. Остановимся несколько подробнее на этой функции, учитывая ее роль в истории демографии.
Логистическая функция выражается следующей формулой6:
Здесь Pt - численность населения в момент времени t,b - постоянная интеграции, 1/a - некая предельная численность, к которой асимптотически приближается численность населения с ростом t,u - параметр, определяющий конкретный вид кривой. Логистическая кривая симметрична относительно точки перегиба, которая равна 1/2а. При малых значениях Р темпы его прироста практически постоянны и равны приблизительно и. С другой стороны, если значения Р велики и близки к На, темпы его прироста стремятся к 0.
Идея логистической функции была впервые высказана А. Кетле в 1835 г. и позже (в 1838 г.) аналитически выведена бельгийским математиком Пьером Франсуа Ферхюлстом (Verhulst) (1804-1849). Ферхюлст пытался найти кривую, описывающую ситуацию «автонасыщения», которая предполагает существование некоторой предельной для данных конкретных условий численности населения. По мере приближения к этой предельной численности рост населения замедляется вследствие действия неких сил сопротивления, мешающих этому росту. Поиск такого рода функции был необходим А. Кетле для опровержения так называемого «закона народонаселения» Т.Р. Маль-
От греч. Люуктшке - искусство вычислять, рассуждать. От этого же слова происходит название модной в наше время специальности - логистики.
туса. Этот «закон», исходит из того, что не ограничиваемый ничем рост населения происходит в геометрической прогрессии (по экспоненциальной функции). По словам. Кетле, в действительности экспоненциальный рост не имеет места из-за того, что «сопротивление или сумма препятствий его увеличению, при прочих равных условиях, действует как квадрат скорости, с какой население имеет тенденцию роста»7. Развивая эту идею, Ферхюлст и вывел указанную выше функцию.
Затем логистическая кривая была надолго забыта и вновь выведена американскими биологами Р. Пирлом (1879-1940) и Л. Ридом, исследовавшими закономерности динамики популяции мух дрозофил. В 1920 г. Пирл и Рид опубликовали статью под названием «О темпах роста населения Соединенных Штатов с 1790 г. и их математическом выражении», в которой они распространили выведенную ими закономерность на человеческое население и применили логистическую кривую для прогнозирования численности населения США8. Формула, выведенная Пирлом и Ридом, имела следующий вид9:
Как показало сравнение расчетных данных с итогами последующих переписей населения США, полученные данные хорошо согласуются с численностью населения по переписи 1930 г., превышают на 5 миллионов численность населения по переписи 1940 г., недооценивают более чем на 2 миллиона численность населения по переписи 1950 г. и далеко расходятся с итогами последующих переписей10. Основная причина этих расхождений заключается не только в том, что прогноз не учитывал внешнюю миграцию в США, но и в том, что его авторы фактически игнорировали вероятность изменения репродуктивного поведения населения, предположив неизменность показателей рождаемости на протяжении всего прогнозного периода. Точно так же прогноз Пирла и Рида не учитывал изменения в смертности.
Известен также опыт применения логистической функция для прогноза численности населения СССР. В 1930 г. отечественный биолог Г.Ф. Гаузе опубликовал свой прогноз, основанный на использовании логистической функции11.
Как и рассмотренные выше линейная и экспоненциальная функции, логистическая функция не может отражать динамику реальных населений в сколько-нибудь длительной перспекти-