Второе поколение Нанотехнологии

Несмотря на универсальность, белок имеет недостатки как технический материал. Белковые машины перестают функционировать при высушивании, замерзают при охлаждении и свариваются при нагревании. Мы не строим машины из плоти, волос и желатина; за многие столетия мы научились использовать свои руки из плоти и костей, чтобы строить машины из дерева, керамики, стали и пластмассы. Аналогично мы будем поступать в будущем. Мы будем использовать протеиновые машины, чтобы строить наномашины из более прочного вещества, чем белки.

Как только нанотехнология двинется дальше использования белков, она будет становиться более обычной с точки зрения инженера. Молекулы будут собираться подобно компонентам набора монтажника, а хорошо связанные части будут оставаться на своих местах. Так же как обычные инструменты строят обычные машины из частей, так же и молекулярные инструменты будут связывать молекулы так, чтобы образовывать крошечные двигатели, моторы, рычаги, обшивки и собирать их в сложные машины.

Части, содержащие только несколько атомов, будут бугристыми, но инженеры могут работать с бугристыми частями, если они имеют гладкие подпорки, их поддерживающие. Достаточно удобно, некоторые связи между атомами делают прекрасные подпорки; часть может быть установлена посредством единственной химической связи, которая будет позволять поворачивать её свободно и плавно. Так как подпорка может быть сделана с использованием только двух атомов (и поскольку для движущихся частей нужно лишь несколько атомов), наномашины могут на самом деле иметь механические компоненты размера молекулы.

Как эти усовершенствованные машины будут построены? За эти годы инженеры использовали технологию, чтобы улучшить технологию. Они использовали металлические инструменты, чтобы оформлять металл в лучшие инструменты, и компьютеры, чтобы проектировать и программировать лучшие компьютеры. Они будут аналогично использовать белковые наномашины, чтобы строить лучшие наномашины. Ферменты указывают путь: они собирают большие молекулы, "выхватывая" маленькие молекулы из воды, в которой они находятся, и удерживают их вместе так, что образуются связи. Ферменты собирают этим способом ДНК, РНК, белки, жиры, гормоны и хлорофилл - на самом деле, практически весь спектр молекул, обнаруживаемых в живых организмах.

Далее инженеры-биохимики будут строить новые ферменты, чтобы собрать новые структуры атомов. Например, они могли бы делать ферментоподобную машину, которая будет присоединять углеродистые атомы к маленькому пятнышку, слой на слой. Будучи правильно связаны, атомы будут наращиваться и формировать прекрасное, гибкое алмазное волокно, более чем в пятьдесят раз прочнее, чем алюминий того же веса. Аэрокосмические компании будут выстраиваться в очередь, чтобы покупать такое волокно тоннами, чтобы делать детали с улучшенными характеристиками (это показывает только одну маленькую причину, почему конкуренция в военной сфере будет двигать молекулярную технологию вперёд, как она двигала многие сферы в прошлом).

Но действительно большой прогресс будет тогда, когда белковые машины будут способны делать структуры более сложные, чем простые волокна. Эти программируемые белковые машины будут походить на рибосомы, программируемые РНК, или старое поколение автоматизированных станков, программируемое перфорированными лентами. Они откроют новый мир возможностей, позволяя инженерам избежать ограничения белков для построения прочных компактных машин прямым проектированием.

Проектируемые белки будут расщеплять и соединять молекулы, как это делают ферменты. Существующие белки связывают множество меньших молекул, используя их как химические инструменты; заново проектируемые белки будут использовать все эти инструменты и т.д.

Далее, органические химики показали, что химические реакции могут приносить замечательные результаты, расставляя молекулы по нужным местам даже без наномашин. Химики не имеют никакого прямого контроля над кувыркающимися движениями молекул в жидкости, поэтому молекулы свободны реагировать любым образом, которым они могут, в зависимости от того, как они сталкиваются. Однако химики тем не менее добиваются, чтобы реагирующие молекулы образовывали правильные структуры, такие как кубические или двенадцатигранные молекулы, и образовывать структуры, выглядящие невероятно, такие как молекулярные кольца с высоконапряжёнными связями. Молекулярные машины будут иметь ещё большую неустойчивость в образовании связей, потому что они могут использовать подобные молекулярные движения для образования связей, но они могут выполнять эти движения такими способами, какими не могут химики.

Действительно, поскольку химики ещё не могут направить молекулярные движения, они редко способны собирать сложные молекулы в соответствии с определёнными планами. Самые большие молекулы, которые они могут делать с определенными сложными структурами, - это линейные цепи. Химики формируют эти структуры (как в механизмах гена), добавляя молекулы по одной последовательно к растущей цепи. Только с одним возможным участком связывания в цепи они могут быть уверены, что добавили следующую часть в правильном месте.

Но если округленная, бугристая молекула имеет, скажем, сотню водородных атомов на своей поверхности, как химики могут отколоть только один специфический атом (5 атомов вверх и 3 атома по диагонали спереди на выпуклости), чтобы добавить что-либо на его место? Смешивание вместе простых химикалий редко сделает эту работу, поскольку маленькие молекулы редко могут выбрать специфические места, с которыми надо реагировать в больших молекулах. Но протеиновые машины будут более избирательными.

Гибкая, программируемая белковая машина схватит большую молекулу (объект работы), в то время как маленькая молекула будет установлена именно напротив правильного места. Подобно ферменту, она тогда она свяжет молекулы вместе. Привязывая молекулу за молекулой к собираемому куску, машина будет собирать всё большую и большую структуру, в то время как будет сохраняться полный контроль над тем, как его атомы упорядочены. Это есть ключевое умение, которым не обладают химики.

Подобно рибосомам, такие наномашины могут работать под управлением молекулярных лент. В отличие от рибосом, они будут иметь дело с широким разнообразием маленьких молекул (не только аминокислот) и присоединять их к собираемому объекту не только в конце цепи, но и в любом желаемом месте. Белковые машины, таким образом, объединят расщепляющие и склеивающие способности ферментов с возможностью программирования рибосом. Но в то время как рибосомы могут строить только неплотные складки белка, эти белковые машины будут строить маленькие, твердые объекты из металла, керамики или алмаза - невидимо маленькие, но прочные.

Так как наши пальцы из плоти подвержены ушибам или ожогам, мы обращаемся к стальным клещам. Там, где белковые машины, вероятно, могут быть разрушены или распадутся, мы обратимся к наномашинам, сделанным из более жесткого материала.