Обратный цикл Карно

Рисунок Обратный цикл Карно в р,v – и Т,s диаграммах.

Рабочее тело с начальными параметрами (т.а) расширяется адиабатно, совершая работу расширения за счет внутренней энергии, и охлаждается от температуры Т1 до температуры Т2. Далее расширение происходит по изотерме, и рабочее тело отбирает от нижнего источника с температурой Т2теплоту q2. Потом газ подвергается сжатию сначала по адиабате, и его температура от Т2 повышается до T1, а затем – по изотерме (Т1= const). При этом рабочее тело отдает верхнему источнику с температурой T1количество теплоты q1.

Т.к. в обратном цикле сжатие рабочего тела происходит при более высокой температуре, чем расширение, работа сжатия, совершаемая внешними силами, больше работы расширения на величину площади контура цикла abсd. Эта работа превращается в теплоту и вместе с теплотой q2передается верхнему источнику. Затратив на осуществление обратного цикла работу lц, можно перенести теплоту от источника с низкой температурой к источнику с более высокой температурой, при этом нижний источник отдаст количество теплоты q2, а верхний получит количество теплоты q1 = q2 + lц.

Обратный цикл Карно является идеальным циклом холодильных установок, которых рабочими телами служат пары легкокипящих жидкостей фреона, аммиака и т.п. Процесс происходит за счет затрат электроэнергии.

Рисунок Термодинамическая схема холодильной машины.

 

Эффективность холодильной установки оценивается холодильным коэффициентом, отношением количества теплоты, отнятой за цикл от холодильной камеры, к затраченной в цикле работе:

e = q2/ lц = q2/ (q1 – q2). (3.5)

Для обратного цикла Карно

e =Т2/ (Т1 –Т2). (3.6)

Чем меньше разность температур между холодильной камерой и ОС, тем меньше нужно затратить энергии для передачи теплоты от холодного тела к горячему и тем выше холодильный коэффициент.