Способы регуляции биосинтеза и круговорота белков у микроорганизмов путем посттрансляционной модификации и избирательного протеолиза

Регуляция биосинтеза белков путем посттрансляционной модификации

Посттрансляционная модификация белков менее распространена, чем процессинг РНК. Тем не менее известны случаи, когда при развитии некоторых вирусов трансляция полицистронной матрицы приводила к образованию общей полипептидной цепи, разрезаемой в дальнейшем на индивидуальные белки специфическими протеиназами. Кроме того, широко известен процессинг ряда ферментов, превращающий их неактивные формы в активные.

У прокариот наиболее распространенным видом процессинга белков является удаление «сигнального» пептида из молекул секре-тируемых белков. Такие белки и ферменты содержат на NH2-конце гидрофобный пептид из 15–30 аминокислот, который необходим для транслокации белка через цитоплазматическую мембрану в процессе его синтеза. После завершения транслокации «сигнальный» пептид удаляется специальной «сигнальной» пептидазой.

К группе процессов посттрансляционной модификации можно отнести ферментативное присоединение коферментов к готовой молекуле апофермента, а также, с некоторой долей условности, и формирование мультимерных белков из нескольких полипептидных цепей с участием белков-шаперонов.

 

Регуляция круговорота белков путем избирательного протеолиза

Количественный и качественный состав белков в клетке может регулироваться не только на этапе их биосинтеза, но и на этапе деградации. В нормально растущих клетках бактерий за клеточный цикл распадается несколько процентов существующих белков. Более высокая скорость круговорота белка характерна для термофильных организмов. В условиях голодания скорость распада возрастает в несколько раз. Протеолиз клеточных белков выполняет две важные функции. Во-первых, расщепляются ненужные в данный момент ферменты, функционирование которых могло бы вызвать дисбаланс метаболизма, и восполняется ресурс аминокислот. Во-вторых, ликвидируются «ошибочные» белки, возникающие в результате сбоя в биосинтетических процессах или за счет мутаций.

Протеолиз играет особенно важную роль в процессах клеточной дифференцировки, о чем, например, свидетельствует утрата способности к спорообразованию при дефекте синтеза протеиназ. Возможны два основных типа протеолиза: АТР-независимый иАТР-зависимый. Первый активируется в условиях голодания и не требует затраты энергии; второй действует постоянно и весьма избирательно. В эти системы, вероятно, включаются разные ферменты, так как некоторые ингибиторы протеиназ подавляют первый процесс и не влияют на второй. АТР-зависимый протеолиз, по-видимому, включает стадию «узнавания» аномального белка и введение в него метки, которой является специальный белковый агент – убихитин, после чего меченый белок подвергается деградации протенназами.

Механизм «узнавания» аномальных или нефункциональных белков неизвестен, скорее всего, важную роль в нем играют особенности третичной структуры белков, и замена даже одной аминокислоты сильно снижает устойчивость белка к внутриклеточному протеолизу. Последнее обстоятельство может существенно мешать получению микроорганизмов-сверхпродуцентов, у которых повышенное образование целевого продукта обусловлено мутациями по соответствующим ферментам. Такие ферменты будут восприниматься системой узнавания как аномальные и подвергаться протеолизу, что тормозит биосинтетические процессы, а иногда и рост микроорганизма. Специфический протеолиз может дополнять регуляцию по механизму катаболитной репрессии. Например, у некоторых дрожжей глюкоза не только репрессирует синтез определенных ферментов, но и стимулирует их протеолитическую деградацию, по-видимому, за счет индукции или активации соответствующей протеиназы. Решающую роль играет протеолиз в так называемой SOS‑регуляции, т.е. активации SOS‑регулона, включающего около 20 генов, которые индуцируются в ответ на некоторые повреждения ДНК и образуют продукты, участвующие в ее репарации. Среди этих продуктов присутствует белок RecA, участвующий в ряде клеточных процессов является более «быстродействующим» механизмом и раньше откликается на изменение внешних условий, чем регуляция биосинтеза этих посредников. Однако, как мы уже отмечали, оба уровня регуляции необходимы для координированного управления биохимическими процессами в клетке. В свою очередь, процессы регуляции активности белковых посредников можно разделить на две большие группы: регуляция активности путем обратимой ковалентной модификации посредника и регуляция активности без ковалентной модификации посредника.

 

Регуляция активности белковых посредников путем их ковалентной модификации

Отличие этого механизма регуляции от посттрансляционной модификации состоит в обратимости процесса и отсутствии изменения длины полипептидной цепи. Кроме того, и это особенно важно отметить, обе формы – модифицированная и немодифицированная – активны, хотя и различаются по величине активности и/или по регуляторным свойствам.

У эукариот самым распространенным способом модификации является фосфорилироеание. Один из наиболее изученных примеров – процесс синтеза и распада гликогена.

Фосфорилирование ферментов, участвующих в синтезе и распаде гликогена, осуществляется киназами, которые сами активируются сАМР. Как уже отмечалось, концентрация сАМР в клетке обратно пропорциональна концентрации АТР. Следовательно, потребность в энергии приводит к фосфори-лированию указанных ферментов, т.е. к стимуляции гидролиза гликогена и торможению его синтеза. Дополнительная стимуляция гидролиза достигается за счет активирующего эффекта AMP, который накапливается при снижении энергетического заряда клетки. Напротив, при накоплении глюкозо‑6‑фосфата, что свидетельствует об активном протекании энергетических процессов, гидролиз гликогена тормозится.

У прокариот, как показано в последнее время, модификация белков путем их фосфорилирования также распространена достаточно широко. Так, в процессе инициации спорообразования у бацилл активируется транскрипция ряда генов, кодирующих белки, часть которых является протеинкиназами, а часть – акцепторами фосфата. Один из последних белков способен связываться с ДНК и, по-видимому, является регулятором транскрипции. Фосфорилирование влияет на его регуляторные свойства. Этот же белок необходим для развития у клеток Bacillus subtilis состояния компетентности. Путем фосфорилирования регулируется также активность некоторых белков у Rhizobium, участвующих в фиксации азота, а также в транспорте ди‑и трикарбоновых кислот. Регуляция транспорта Сахаров путем фосфорилирования компонентов фосфотрансферазной системы обнаружена у Escherichia coli. Вообще же у этой бактерии найдено около 170 белков, способных фосфорилироваться.

Однако наиболее изученным примером регуляции путем ковалентной модификации является аденилирование и уридилирование ферментов в системе регуляции активности глутаминсинтетазы.

Указанная регуляция активности ГС дополняется регуляцией на уровне биосинтеза фермента: немодифицированный белок РП через посредство других специальных белков подавляет транскрипцию локусов ГС. В свою очередь, эти белковые регуляторы могут фосфорилироваться с участием специфических протеинкиназ и изменять свою регуляторную активность.

Все эти события – яркий пример каскадной регуляции – наиболее эффективного механизма регуляции сложных метаболических путей, каким и является, в частности, азотный метаболизм.

 

Регуляция активности белковых посредников путем нековаленткого взаимодействия с эффекторами

1. Взаимодействие с субстратами. Ферменты, активность которых регулируется субстратом, должны иметь несколько активных центров, сходных по природе и взаимодействующих между собой. Здесь возможны два случая:

а) присоединение первой молекулы субстрата облегчает присоединение последующих молекул, и скорость реакции растет по экспоненциальному закону. График зависимости начальной скорости реакции от концентрации субстрата имеет S‑образную форму;

б) присоединение первой молекулы субстрата затрудняет присоединение последующих молекул.

Аналогичные механизмы регуляции действуют при трансмембранном транспорте некоторых субстратов.

2. Взаимодействие с продуктами и другими эффекторами, отличными от субстратов. Ферменты, активность которых регулируется по этому механизму, должны иметь различающиеся по природе активные центры: каталитический и регуляторный. Эти центры обычно размещены на разных субъединицах фермента, причем связывание эффектора с регуляторным центром влияет на конформацию каталитического центра и изменяет сродство к субстрату, которое, как правило, снижается. При этом возможны разные обстоятельства:

а) в анаболических процессах конечный продукт метаболического пути, накапливаясь выше определенного уровня, подавляет свой биосинтез, ингибируя активность первого фермента данного пути;

б) в катаболических путях метаболизма отрицательными эффекторами часто служат соединения, являющиеся аккумуляторами энергии, а другие компоненты аденилатной системы могут выступать в качестве положительных эффекторов. Таким образом, активность данных ферментов зависит от «энергетического заряда» клетки;

в) амфиболические ферменты могут регулироваться с помощью обоих механизмов;

г) в разветвленных биосинтетических путях подавление одним из конечных продуктов активности фермента, катализирующего начальные этапы процесса, приводило бы к дефициту других продуктов данного пути. Поэтому необходима особая организация регуляторных процессов. Существуют две основные возможности.

Во-первых, образование изоферментов, катализирующих начальную стадию пути, активность каждого из которых избирательно подавляется только одним из конечных продуктов. Примером может служить биосинтез ароматических аминокислот у Escherichia coli, в котором конечные продукты – тирозин, триптофан и фенилаланин – подавляют каждый активность одной из альдолаз, катализирующих первую реакцию пути. Во-вторых, использование ферментов, имеющих несколько взаимодействующих регуляторных центров, каждый из которых специфичен только для одного из эффекторов. По отдельности они не оказывают существенного влияния на активность фермента, а при их совместном действии активность подавляется. Это так называемое согласованное, или мультивалентное ингибирование. Например, активность аспартаткиназы у Escherichia coli подавляется только сочетанием лизина, метионина и лейцина. Для глутаминсинтетазы обнаружено восемь кумулятивных эффекторов: аланин, глицин, гистидин, триптофан, ЦТР, AMP, карбамоилфосфат, глюкозамин‑6‑фосфат.

 

Регуляция активности белковых посредников путем пространственного разобщения и взаимодействия с мембранами

Механизмы первого типа более распространены у эукариот в связи с локализацией ферментов в субклеточных органеллах: митохондриях, лизосомах и т.д. Однако и в клетках прокариот возможны определенные виды компартментации:

а) часть ферментного аппарата прокариот локализована в периплазматическом пространстве. Таким образом, создается возможность регуляции активности ферментов путем управления скоростью проникновения в «отсек» субстратов или выхода из него продуктов;

б) ферменты, катализирующие серию последовательных реакций, могут формировать «ансамбль», локализованный либо в цитоплазме, либо в цитоплазматической мембране. Продукты, образуемые на предыдущей стадии, «подхватываются» последующим ферментом без освобождения в среду.

Для регуляторного действия конечного продукта доступен только последний фермент, но он может передавать эффект на предыдущие ферменты за счет кооперативных взаимодействий. Существует представление о «метаболоне», т.е. комплексе ферментов, закрепленных на «подложке». Каталитические свойства в этом случае проявляются внутри ансамбля, а подложка реагирует на регуляторное действие эффекторов. Например, ни один из ферментов может не реагировать на данный эффектор, но в ансамбле, за счет конформационных изменений подложки, они становятся к нему чувствительными.

Важную роль в регуляции активности ферментов может играть их взаимодействие с мембранами. В мембранно-связанном состоянии физико-химические свойства ферментов изменяются. Это явление называется аллотопия. Гидрофобные взаимодействия мембранных липидов и белков могут переводить последние в неактивное состояние, а электростатические взаимодействия, напротив, вызывать активацию белков. В свою очередь, сила электростатического взаимодействия липидов и белков зависит от внутриклеточной концентрации электролитов, а следовательно, от состава среды, окружающей клетку, и от физиологического статуса последней. Таким образом, для регуляции ферментов по этому механизму существуют широкие возможности, хотя конкретные механизмы в силу труднопреодолимых методических препятствий пока изучены мало.