Ток смещения

Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле, то должно сущест­вовать и обратное явление: всякое изменение электрического поля должно вы­зывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электриче­ским полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения.

Рассмотрим цепь переменного тока, содержащую конденсатор (рис. 61). Между обкладками заряжающего конденсатора имеется переменное электрическое поле, поэтому, согласно Максвеллу, через конденсатор "протекают" токи смещения, причем в тех участках, где отсутствуют проводники.

Найдем количественную связь между изменяющимся электрическим и вызываемым им магнитным полем . По Максвеллу, переменное электриче­ское поле конденсатора в каждый момент времени создает такое магнитное по­ле, как если бы между обкладками конденсатора существовал ток проводимо­сти, равный току в проводящих проводах. Тогда можно утверждать, что токи проводимости (I) и смещения (Ісм) равны: Ісм=І. Ток проводимости вблизи об­кладок конденсатора

(5.3)

(поверхностная плотность заряда а на обкладках равна электрическому смеще­нию D в конденсаторе). Подынтегральное выражение в (5.3) можно рассматривать как частый случай скалярного произведения , когда и взаимно параллельны. Поэтому для общего случая можно записать

.

Сравнивая это выражение с І = Ісм =имеем

. (5-4)

Выражение (5.4) и было названо Максвеллом плотностью тока смещения.

Рассмотрим, каково же направление векторов плотностей токов проводи­мости и токов смещения. При зарядке конденсатора (рис. 61) через проводник, соединяющий обкладки, ток течет от правой обкладки к левой, поле в конденсаторе усиливается, вектор растет со временем. Следовательно, , те.

вектор направлен в ту же сторону, что и .

На рисунке видно, что направления векторов и совпадают. При разрядке конденсатора (рис. 61, б) через проводник, соединяющий обкладки, ток течет от левой обкладки к правой, поле в конденсаторе ослабляется, вектор убывает со временем, Следовательно , т.е. вектор направлен противоположно вектору . Однако вектор направлен опять так же, как и вектор . Из разнообразных примеров следует, что направление вектора , а следовательно, и вектора см совпадает с направлением вектора , как это и следует из формулы (5.4).

 

а б

Рис. 61

Из всех физических свойств, присущих току проводимости, Максвелл приписал току смещения лишь одно - способность создавать в окружающем пространстве магнитное поле. Таким образом, ток смещения (в вакууме или веществе) создает в окружающем пространстве магнитное поле.

В диэлектриках ток смещения состоит из двух слагаемых. Так как, согласно, где - напряженность электростатического поля, а - поляризованность, то плотность тока смещения

(5.5)

где - плотность тока смещения в вакууме, - плотность тока поляризации - тока, обусловленного упорядоченным движением электрических зарядов в диэлектрике (смещение зарядов в неполярных молекулах или поворот дипо­лей в полярных молекулах)

Возбуждение магнитного поля токами поляризации правомерно, т.к. токи поляризации по своей природе не отличаются от токов проводимости. Однако то, что и другая часть плотности тока смещения (), не связанная с движением зарядов, а обусловленная только изменением электрического поля во времени, также возбуждает магнитное поле, является принципиально новым утверждением Максвелла. Даже в вакууме всякое изменение во времени элек­трического поля приводит к возникновению в окружающем пространстве маг­нитного поля

Следует отметить, что название (ток смещения) является условным, а точ­нее - исторически сложившимся, т.к. ток смещения по своей сути - это из­меняющееся со временем электрическое поле. Ток смещения поэтому сущест­вует не только в вакууме или диэлектриках, но и внутри проводников, по кото­рым течет переменный ток. Однако в данном случае он пренебрежительно мал по сравнению с током проводимости. Наличие токов смещения подтверждено экспериментально советским физиком А.А.Эйхенвальдом, изучавшим магнит­ное поле тока поляризации, которое, как следует из (5.5), является частью тока смещения

Максвелл ввел понятие полного тока, равного сумме токов проводимости и смещения. Плотность полного тока

Введя понятие тока смещения и полного тока, Максвелл по-новому подошел к рассмотрению замкнутости цепей переменного тока. Полный ток в них всегда замкнут, т.е. на конце проводника обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Максвелл обобщил теорему о циркуляции вектора Н (), введя в ее

правую часть полный ток сквозь поверхность S, натянутую на

замкнутый контур L. Тогда обобщенная теорема о циркуляции вектора Н запишется в виде

. (5.6)

Выражение (5.6) справедливо всегда, свидетельством чего является полное соответствие теории и опыта.