Закон Фарадой и его вывод из закона сохранения энергии
Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток, который указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно и э.д.с. электромагнитной индукции εi, определяется только скоростью изменения магнитного потока, .
Теперь необходимо выяснить знак εi. Было показано, что знак магнитного потока зависит от выбора положительной нормали к вектору. В свою очередь, положительное направление нормали связано с током правилом правого винта. Следовательно, выбирая определенное направление нормали, мы определяем как знак потока, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая и контуре э.д.с. равна
. (3.26)
Знак минус показывает, что увеличение потока вызывает >0 вызывает ε1<0, т.е. поле индукционного тока направлено навстречу потоку, уменьшение потока <0 вызывает, т.е. направление потока и поля индукционного тока совпадают. Знак минус в формуле (3.26)является математическим выражением правила Ленца - общего правила для нахождения направления индукционного тока, выведенного в 1833г.
II р а в и л о Л е н ц а: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.
Закон Фарадея можем быть непосредственно получен из закона сохранения энергии, как это впервые сделал Г.Гельмгольц. Рассмотрим проводник с током І, который помещен в однородное магнитное поле, перпендикулярное плоскости контура, и может свободно перемешаться (см. рис 47). Под действием силы Ампера F, направление которой показано на рисунке, проводник перемешается на отрезок dx. Таким образом, сила Ампера производит работу dА=IdФ, где dФ - пересеченный проводником магнитный поток.
Если полное сопротивление контура равно R, то, согласно закону сохранения энергии, работа источника тока за время dt (ε I dt) будет складываться из работы на джоулеву теплоту (І2 R dt) и работы но перемещению проводника в магнитном поле (I dФ):
,
откуда
, (3.27)
где , есть не что иное, как з а к о н Ф а р а д е я
3 а к о н Фарадея можно сформулировать еще таким образом: э.д.с. ε1 электромагнитной индукции в контуре численно равна и противоположна знаку скорости изменения магнитною потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным, э.д.с ε1, не зависит от способа изменения магнитного потока
Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является в е б е р (Вб), получим
.
Какова природа э.д с. электромагнитной индукции?
Согласно закону Фарадой, возникновение э.д.с. электромагнитной индукции возможно в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э.д.с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике Циркуляция вектора этого поля по любому неподвижному контуру L проводника представляет собой э.д.с. электромагнитной индукции:
. (3.28)