Собственная проводимость полупроводников

Под действием внешних факторов некоторые валентные электроны атомов кристаллической решетки приобретают энергию, достаточную для освобождения от ковалентных связей. Так, при любых температурах выше абсолютного нуля атомы твердого тела колеблются около узлов кристаллической решетки. Чем выше температура, тем больше амплитуда колебаний. Время от времени энергия этих колебаний, отдельные флуктуации которой могут превышать ее среднее значение, сообщается какому-либо электрону, в результате чего его полная энергия оказывается достаточной для перехода из валентной зоны в зону проводимости. Этот процесс носит вероятностный характер.

В соответствии со статистикой Ферми - Дирака вероятность того, что состояние с энергией W при данной температуре Т будет занято электроном, выражается функцией:

 

fn = (W,T) = 1/eW-WF/kT + 1 = 1/exp(W-WF/kT) + 1 (1.4)

 

где k - постоянная Больцмана;

Т - абсолютная температура.

Очевидно, имеются только две возможности:

1) уровень с энергией W будет занят электроном и 2) уровень не занят электроном. Величина WF называется энергией, или уровнем Ферми, При любых значениях температуры уровень Ферми совпадает с тем энергетическим уровнем, для которого характерна вероятность занятия (или не занятия) его электроном р = 1/2, т. е. 50 %.

С увеличением температуры концентрация свободных электронов в полупроводнике возрастает по экспоненциальному закону:

 

(1.5)

 

где ni - количество свободных электронов в 1см3 химически чистого полупроводника;

ΔW - ширина запрещенной зоны;

n0 - коэффициент, равный 2 * 1013 см-3 для германия и 2 * 1010 см -3 для кремния;

k - постоянная Больцмана;

Т - абсолютная температура.

Таким образом, если извне будет подведена энергия, достаточная для перехода электрона через запрещенную зону, то полупроводник будет обладать определенной проводимостью.

На рисунке 1.9 изображена энергетическая диаграмма беспримесного полупроводника и распределение Ферми - Дирака при различных температурах. По оси абсцисс отложена вероятность (р) заполнения электронами соответствующих энергетических уровней. На этом рисунке минимальное значение энергии зоны проводимости обозначено Wп, максимальное значение энергии валентной зоны - Wв. При температуре абсолютного нуля все валентные уровни заполнены с вероятностью, равной единице, а вероятность заполнения любого уровня зоны проводимости равна нулю. Этому случаю соответствует распределение Ферми - Дирака в виде графика 1 (ломаная линия). При комнатной температуре часть валентных электронов переходит в зону проводимости. Поэтому вероятность заполнения электронами валентной зоны оказывается несколько меньше единицы, а вероятность заполнения электронами зоны проводимости - больше нуля (кривая 2). Уровень Ферми располагается посредине запрещенной зоны. Вероятность заполнения этого уровня равна 0,5. Однако поскольку он находится в запрещенной зоне, то фактически электроны не могут стабильно находиться на этом уровне.

При значительном увеличении температуры kT растет, стремясь к бесконечности. Поэтому вероятность заполнения любого разрешенного уровня (1.8) будет стремиться к 0,5 (прямая 3 на рисунке 1.9).

Как известно, для полупроводников ширина запрещенной зоны, разделяющей зону энергии валентных электронов от зоны проводимости, незначительна. Например, для германия ширина запрещенной зоны равна 0,67 эВ, а для кремния - 1,1 эВ. Поэтому для получения заметной проводимости в этих веществах обычно достаточно тепловой энергии, возникающей у электронов при комнатной температуре.

При освобождении электрона из ковалентной связи в последней возникает как бы свободное место, обладающее положительным элементарным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой, а процесс образования пары электрон - дырка получил название генераций зарядов. Дырка обладает положительным зарядом, поэтому она может присоединить к себе электрон соседней заполненной ковалентной связи. В результате этого восстанавливается одна связь), от процесс называют рекомбинацией) и разрушается соседняя или, другими словами, заполняется одна дырка и одновременно с этим возникает новая в другом месте. Такой генерационно-рекомбинациониый процесс непрерывно повторяется, и дырка, переходя от одной связи к другой, будет перемещаться по кристаллу, что равносильно перемещению положительного заряда, равного по величине заряду электрона.

Рисунок 1.9 – Энергетическая диаграмма и графики распределения Ферми – Дирака для беспримесного полупроводника при различных температурах

Рисунок 1.10 – Принцип дырочной проводимости

 

При этом надо иметь в виду, что концентрация дырок в идеальной кристаллической решетке химически чистого (собственного) полупроводника (pi) всегда равна концентрации свободных электронов;

pi = ni. (1.6)

Пользуясь соотношением (1.5), можно подсчитать, что при комнатной температуре (Т = 293 К) число свободных электронов в беспримесном германии равно ni = 2,5 – 1013 см-3.

Учитывая, что в каждом кубическом сантиметре объема германия находится примерно 4,4 * 1022 атомов, можно заключить, что один свободный электрон приходится на миллиард атомов вещества.

В кремнии при той же температуре количество свободных электронов из-за большей ширины запрещенной зоны меньше и составляет ni = 1,4 * 1010 см-3.

Скорость генерации носителей Vген (как и скорость рекомбинации Vрек) определяется свойствами полупроводника и его температурой. Скорость рекомбинации, кроме того, пропорциональна концентрации электронов и дырок, так как чем больше количество носителей, тем вероятнее, что их встреча завершится рекомбинацией. Учитывая, что в установившемся режиме должно существовать динамическое равновесие (скорость генерации Vген должна быть равной скорости рекомбинации Vрек), получим

Vген = Vрек = r ni pi = r ni2 (1.7)

где r - множитель, определяемый свойствами полупроводника.

Это условие называют условием равновесной концентрации носителей в собственном полупроводнике.

При отсутствии внешнего электрического поля электроны и дырки перемещаются в кристалле хаотически вследствие теплового движения. В этом случае ток в полупроводнике не возникает. Если же на кристалл действует электрическое поле, движение дырок и электронов становится упорядоченным и в кристалле возникает электрический ток. Чтобы понять, как перемещаются дырки, рассмотрим рисунок 1.10, на котором изображено несколько одних и тех же атомов, расположенных вдоль полупроводника, в различные моменты времени. Пусть в некоторый начальный момент времени в крайнем атоме 1, расположенном слева, появилась дырка вследствие того, что из этого атома «ушел» электрон. В этом случае атом становится заряженным положительно и может притянуть к себе электроны соседнего атома. При наличии электрического поля, направленного слева направо, электрон атома 2 двигаясь против силовых линий поля, заполнит дырку в первом атоме, но зато образуется новая дырка в атоме 2 (рисунок 1.10, б). Последовательно переходя от одного атома к другому, дырка через некоторое время образуется в крайнем правом атоме 6 (рисунок 1.10, е). Таким образом, проводимость полупроводника обусловлена перемещением, как свободных электронов, так и дырок. В первом случае носители зарядов отрицательны (негативны), во втором - положительны (позитивны). Соответственно различают два вида проводимости полупроводников - электронную, или проводимость типа n (от слова negative - отрицательный), и дырочную, или проводимость типа р (от слова positive - положительный).

В химически чистом кристалле полупроводника число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса зарядов обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника. При этом общий ток в полупроводнике равен сумме электронного и дырочного токов. Это условие может быть записано так:

J = Jn + Jp (1.8)

где J - плотность тока, А/см2; Jn - плотность электронной составляющей тока; Jp - плотность дырочной составляющей тока.

Величина плотности тока зависит от скорости перемещения носителей заряда в полупроводнике. Поскольку электронам при движении внутри кристалла приходится непрерывно сталкиваться с атомами кристаллической решетки, скорость их движения характеризуется, некоторой средней величиной Vnср. Средняя скорость движения электрона прямо пропорциональна напряженности электрического поля, воздействующего на полупроводник, т. е:

Vn ср = μnE, (1.9)

где μn - коэффициент пропорциональности, который называют подвижностью электронов.

Подвижность μn2/(В с)] численно равна средней скорости перемещения электрона под действием электрического поля напряженностью 1 В/м:

μn = Vn ср/E, (1.10)

Аналогичные процессы происходят и при упорядоченном движении дырок через кристалл. Поэтому:

Vn ср = μрE, (1.11)

где VР СР - средняя скорость движения дырки; μР - коэффициент пропорциональности, который называют подвижностью дырок. Величина подвижности зависит от типа полупроводника (структуры его кристаллической решетки, химического состава, температуры и т. д.).

Для германия подвижность электронов при комнатной температуре равна приблизительно 0,39 м2/(В с), а для кремния - 0,135 м2/(В с). Подвижность дырок для германия составляет 0,19 м2/(В с), а для кремния - 0,05 м2/(В с).

Известно, что плотность тока численно равна заряду (в кулонах), проходящему через единицу площади в 1 с. Следовательно,

Jn = eniVn ср = eniμnE, (1.12)

где е - заряд электрона;

ni - концентрация электронов.

Аналогично для дырочного тока:

JP = epiμpE (1.13)

Общая плотность тока:

J = Jn + Jp = e(μnni + μppi)E (1.14)

В то же время плотность тока по закону Ома равна:

J = σE, (1.15)

где σ - удельная электропроводность вещества.

Сравнивая (1.14) и (1.15), получаем:

σ = e(μnni + μppi) (1.16)

В результате можно сделать следующее заключение: удельная электропроводность полупроводника зависит от концентрации электронов и дырок и от их подвижности. Согласно (1.5) и (1.6) получим:

 
 


(1.17)

 

Эта формула показывает, что удельная электропроводность полупроводника зависит от типа вещества (так как в формулу входят величины n0 и ΔW), а также от температуры. Чем выше температура, тем удельная электропроводность выше, причем эта зависимость носит экспоненциальный характер.