Резонанс в сложной цепи
Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.
При определении резонансных частот для реактивного двухполюсника аналитическое выражение его входного реактивного сопротивления или входной реактивной проводимости следует представить в виде отношения двух полиномов по степеням , т.е. или . Тогда корни уравнения дадут значения частот, которые соответствуют резонансам напряжений, а корни уравнения - значения частот, при которых возникают резонансы токов. Общее число резонансных частот в цепи на единицу меньше количества индуктивных и емкостных элементов в схеме, получаемой из исходной путем ее сведения к цепи (с помощью эквивалентных преобразований) с минимальным числом этих элементов. Характерным при этом является тот факт, что режимы резонансов напряжений и токов чередуются.
В качестве примера определим резонансные частоты для цепи рис. 7. Выражение входного сопротивления данной цепи имеет вид