Методика расчета

Приложение 1

(к разделу 2 «Схема планировочной организации земельного участка»)

Содержание:

  1. Схема планировочной организации земельного участка…………………………………………………………….1

Приложение 2

(к разделу 3 «Архитектурные решения»)

Содержание:

  1. Фасад в осях 1/1-15/1.......................................................................................................................................1
  2. Фасад в осях Е/1-А/1.......................................................................................................................................2
  3. Фасад в осях А-Ф..............................................................................................................................................3
  4. Фасад в осях Ф-А..............................................................................................................................................4

Приложение 3

(к разделу 4 «Конструктивные решения»)

Содержание:

1. Общие данные

2. Схема расположения стен и колонн на отметке -3.000

3. Схема расположения стен и колонн на отметке +3.600

4. Схема расположения и схема нижнего армирования плиты ПМ1 на отметке -3.600

5. Схема расположения и схема верхнего армирования плиты ПМ1 на отметке -3.600

6. Схема расположения и схема нижнего армирования плиты ПМ2 на отметке +3.600

7. Схема расположения и схема верхнего армирования плиты ПМ2 на отметке +3.600

8. Схема армирования стены Стм. 1.5

9. Схема армирования колонны К1

10. Каркас пространственный КП2

11. Каркас плоский КР2

12. Каркас пространственный КП1

13. Методика расчета в программе SCAD

14. Протокол расчета

15. Расчет наиболее нагруженной колонны

16. Расчет колонны на продавливание


Методика расчета

  1. Общие данные

Расчет выполнен с помощью проектно-вычислительного комплекса SCAD. Комплекс реализует конечно-элементное моделирование статических и динамических расчетных схем, проверку устойчивости, выбор невыгодных сочетаний усилий, подбор арматуры железобетонных конструкций, проверку несущей способности стальных конструкций. В представленной ниже пояснительной записке описаны лишь фактически использованные при расчетах названного объекта возможности комплекса SCAD.

  1. Краткая характеристика методики расчета

В основу расчета положен метод конечных элементов с использованием в качестве основных неизвестных перемещений и поворотов узлов расчетной схемы. В связи с этим идеализация конструкции выполнена в форме, приспособленной к использованию этого метода, а именно: система представлена в виде набора тел стандартного типа (стержней, пластин, оболочек и т.д.), называемых конечными элементами и присоединенных к узлам.

Тип конечного элемента определяется его геометрической формой, правилами, определяющими зависимость между перемещениями узлов конечного элемента и узлов системы, физическим законом, определяющим зависимость между внутренними усилиями и внутренними перемещениями, и набором параметров (жесткостей), входящих в описание этого закона и др.

Узел в расчетной схеме метода перемещений представляется в виде абсолютно жесткого тела исчезающе малых размеров. Положение узла в пространстве при деформациях системы определяется координатами центра и углами поворота трех осей, жестко связанных с узлом. Узел представлен как объект, обладающий шестью степенями свободы - тремя линейными смещениями и тремя углами поворота.

Все узлы и элементы расчетной схемы нумеруются. Номера, присвоенные им, следует трактовать только, как имена, которые позволяют делать необходимые ссылки.

Основная система метода перемещений выбирается путем наложения в каждом узле всех связей, запрещающих любые узловые перемещения. Условия равенства нулю усилий в этих связях представляют собой разрешающие уравнения равновесия, а смещения указанных связей - основные неизвестные метода перемещений.

В общем случае в пространственных конструкциях в узле могут присутствовать все шесть перемещений:

1 - линейное перемещение вдоль оси X;

2 - линейное перемещение вдоль оси Y;

3 - линейное перемещение вдоль оси Z;

4 - угол поворота с вектором вдоль оси X (поворот вокруг оси X);

5 - угол поворота с вектором вдоль оси Y (поворот вокруг оси Y);

6 - угол поворота с вектором вдоль оси Z (поворот вокруг оси Z).

Нумерация перемещений в узле (степеней свободы), представленная выше, используется далее всюду без специальных оговорок, а также используются соответственно обозначения X, Y, Z, UX, UY и UZ для обозначения величин соответствующих линейных перемещений и углов поворота.

В соответствии с идеологией метода конечных элементов, истинная форма поля перемещений внутри элемента (за исключением элементов стержневого типа) приближенно представлена различными упрощенными зависимостями. При этом погрешность в определении напряжений и деформаций имеет порядок (h/L)k, где h — максимальный шаг сетки; L — характерный размер области. Скорость уменьшения ошибки приближенного результата (скорость сходимости) определяется показателем степени k, который имеет разное значение для перемещений и различных компонент внутренних усилий (напряжений).

  1. Расчетная схема Системы координат

Для задания данных о расчетной схеме могут быть использованы различные системы координат, которые в дальнейшем преобразуются в декартовы. В дальнейшем для описания расчетной схемы используются следующие декартовы системы координат:

Глобальная правосторонняя система координат XYZ, связанная с расчетной схемой

Локальные правосторонние системы координат, связанные с каждым конечным элементом.

  1. Тип схемы

Расчетная схема определена как система с признаком 5. Это означает, что рассматривается система общего вида, деформации которой и ее основные неизвестные представлены линейными перемещениями узловых точек вдоль осей X, Y, Z и поворотами вокруг этих осей.

  1. Выбранный режим статического расчета

Статический расчет системы выполнен в линейной постановке.

  1. Набор исходных данных

Детальное описание расчетной схемы содержится в документе "Исходные данные", где в табличной форме представлены сведения о расчетной схеме, содержащие координаты всех узлов, характеристики всех конечных элементов, условия примыкания конечных элементов к узлам и др.

  1. Граничные условия

Возможные перемещения узлов конечно-элементной расчетной схемы ограничены внешними связями, запрещающими некоторые из этих перемещений. Наличие таких связей помечено в таблице "Координаты и связи" описания исходных данных символом #.

  1. Условия примыкания элементов к узлам

Точки примыкания конечного элемента к узлам (концевые сечения элементов) имеют одинаковые перемещения с указанными узлами.

  1. Характеристики использованных типов конечных элементов

В расчетную схему включены конечные элементы следующих типов.

Стержневые конечные элементы, для которых предусмотрена работа по обычным правилам сопротивления материалов. Описание их напряженного состояния связано с местной системой координат, у которой ось X1 ориентирована вдоль стержня, а оси Y1 и Z1 — вдоль главных осей инерции поперечного сечения.

Некоторые стержни присоединены к узлам через абсолютно жесткие вставки, с помощью которых учитываются эксцентриситеты узловых примыканий. Тогда ось X1 ориентирована вдоль упругой части стержня, а оси Y1 и Z1 — вдоль главных осей инерции поперечного сечения упругой части стержня.

К стержневым конечным элементам рассматриваемой расчетной схемы относятся следующие типы элементов:

Элемент типа 10, который работает по пространственной схеме и воспринимает продольную силу N, изгибающие моменты Мy и Mz, поперечные силы Qz и Qy, а также крутящий момент Mk.

Конечные элементы оболочек, геометрическая форма которых на малом участке элемента является плоской (она образуют многогранник, вписанный в действительную криволинейную форму срединной поверхности оболочки). Для этих элементов, в соответствии с идеологией метода конечных элементов, истинная форма перемещений внутри элемента приближенно представлена упрощенными зависимостями. Описание их напряженного состояния связано с местной системой координат, у которой оси X1 и Y1 расположены в плоскости элемента и ось Х1 направлена от первого узла ко второму, а ось Z1 ортогональна поверхности элемента.

Треугольный элемент типа 42, не является совместным и моделирует поле нормальных перемещений внутри элемента полиномом 4 степени, а поле тангенциальных перемещений полиномом первой степени. Располагается в пространстве произвольным образом.

Четырехугольный элемент типа 44, который имеет четыре узловые точки, не является совместным и моделирует поле нормальных перемещений внутри элемента полиномом 3 степени, а поле тангенциальных перемещений неполным полиномом 2 степени. Располагается в пространстве произвольным образом.

  1. Описание загружений и их характеристики

Конструкция рассчитана на 11 статических загружений.

  1. Результаты расчета

В настоящем отчете результаты расчета представлены выборочно. Вся полученная в результате расчета информация хранится в электронном виде.

  1. Перемещения

Вычисленные значения линейных перемещений и поворотов узлов от загружений представлены в таблице результатов расчета «Перемещения узлов».

Вычисленные значения линейных перемещений и поворотов узлов от комбинаций загружений представлены в таблице результатов расчета «Перемещения узлов от комбинаций».

  1. Правило знаков для перемещений

Правило знаков для перемещений принято таким, что линейные перемещения положительны, если они направлены в сторону возрастания соответствующей координаты, а углы поворота положительны, если они соответствуют правилу правого винта (при взгляде от конца соответствующей оси к ее началу движение происходит против часовой стрелки).

  1. Усилия и напряжения

Вычисленные значения усилий и напряжений в элементах от загружений представлены в таблице результатов расчета «Усилия/напряжения элементов».

Вычисленные значения усилий и напряжений в элементах от комбинаций загружений представлены в таблице результатов расчета «Усилия/напряжения элементов от комбинаций загружений».

Для стержневых элементов усилия по умолчанию выводятся в концевых сечениях упругой части (начальном и конечном) и в центре упругой части, а при наличии запроса пользователя и в промежуточных сечениях по длине упругой части стержня. Для пластинчатых, обьемных, осесимметричных и оболочечных элементов напряжения выводятся в центре тяжести элемента и при наличии запроса пользователя в узлах элемента.

  1. Правило знаков для усилий (напряжений)

Правила знаков для усилий (напряжений) приняты следующими:

Для стержневых элементов возможно наличие следующих усилий:

N - продольная сила;

MKP - крутящий момент;

MY - изгибающий момент с вектором вдоль оси Y1;

QZ - перерезывающая сила в направлении оси Z1 соответствующая моменту MY;

MZ - изгибающий момент относительно оси Z1;

QY - перерезывающая сила в направлении оси Y1 соответствующая моменту MZ;

RZ - отпор упругого основания.

Положительные направления усилий в стержнях приняты следующими:

для перерезывающих сил QZ и QY - по направлениям соответствующих осей Z1 и Y1;

для моментов MX, MY, MZ - против часовой стрелки, если смотреть с конца соответствующей оси X1, Y1, Z1;

положительная продольная сила N всегда растягивает стержень.

На рисунке показаны положительные направления внутренних усилий и моментов в сечении горизонтальных и наклонных (а), а также вертикальных (б) стержней.

Знаком “+” (плюс) помечены растянутые, а знаком ”-” (минус) - сжатые волокна поперечного сечения от воздействия положительных моментов My и Mz.

В конечных элементах оболочки вычисляются следующие усилия:

нормальные напряжения NX, NY;

сдвигающее напряжений TXY;

моменты MX, MY и MXY;

перерезывающие силы QX и QY;

реактивный отпор упругого основания RZ.

На рисунке показаны положительные значения напряжений, перерезывающих сил и векторов моментов, действующие по граням элементарного прямоугольника, вырезанного в окрестности центра тяжести КЭ оболочки.

  1. Суммарные значения приложенных нагрузок по нагружениям

В протоколе решения задачи для каждого из нагружений указываются значения суммарной узловой нагрузки, действующей на систему.

  1. Расчетные сочетания усилий

Значения расчетных сочетаний усилий представлены в таблице результатов расчета «Расчетные сочетания усилий».

Вычисление расчетных сочетаний усилий производится на основании критериев, характерных для соответствующих типов конечных элементов – стержней, плит, оболочек, массивных тел. В качестве таких критериев приняты экстремальные значения напряжений в характерных точках поперечного сечения элемента. При расчете учитываются требования нормативных документов и логические связи между загружениями.

Основой выбора невыгодных расчетных сочетаний усилий служит принцип суперпозиции. Из всех возможных сочетаний, отбираются те РСУ, которые соответствуют максимальному значению некоторой величины, избранной в качестве критерия и зависящей от всех компонентов напряженного состояния:

а) для стержней — экстремальные значения нормальных и касательных напряжений в контрольных точках сечения, которые показаны на рисунке

б) для элементов, находящихся в плоском напряженном состоянии — по огибающим экстремальным кривым нормальных и касательных напряжений по формулам:

Обозначения приведены на рисунке. Нормальные напряжения вычисляются в диапазоне изменения углов от 90° до -90°, а касательные от 90° до 0°. Шаг изменения углов 15°.

в) для плит применяется аналогичный подход — расчетные формулы приобретают вид:

Кроме того, определяются экстремальные значения перерезывающих сил.

г) для оболочек также применяется аналогичный подход, но вычисляются напряжения на верхней и нижней поверхностях оболочки с учетом мембранных напряжений и изгибающих усилий.

д) для объемных элементов критерием для определения опасных сочетаний напряжений приняты экстремальные значения среднего напряжения (гидростатического давления) и главных напряжений девиатора.

Расчёт строительных конструкций пожарного депо произведён c использованием ПК «Scad 11.3 для Windows», с учётом сейсмического воздействия силой 9 баллов.

Уровень ответственности здания – II, что учтено в расчёте строительных конструкций коэффициентом надёжности 0,95.

Все проектные решения, конструкции и материалы приняты в соответствии с заданием на проектирование и техническими условиями на строительные конструкции и материалы.

Для расчетов приняты следующие нагрузки: