Простой трубопровод постоянного сечения

Трубопровод называется простым, если он не имеет ответвлений. Простые трубопроводы могут образовывать соединения: последовательное, параллельное или разветвленное. Трубопроводы могут быть сложными, содержащими как последовательное, так и параллельное соединения или разветвления.

Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад (разность) уровней энергии может быть создан тем или иным способом: работой насоса, благодаря разности уровней жидкости, давлением газа. В машиностроении приходится иметь дело главным образом с трубопроводами, движение жидкости в которых обусловлено работой насоса.

При гидравлическом расчете трубопровода чаще всего определяется его потребный напор Hпотр — величина, численно равная пьезометрической высоте в начальном сечении трубопровода. Если потребный напор задан, то его принято называть располагаемым напором Hрасп. В этом случае при гидравлическом расчете может определяться расход Q жидкости в трубопроводе или его диаметр d. Значение диаметра трубопровода выбирается из установленного ряда в соответствии с ГОСТ 16516—80.

Пусть простой трубопровод постоянного проходного сечения, произвольно расположенный в пространстве (рисунок 5.1, а), имеет общую длину l и диаметр d и содержит ряд местных гидравлических сопротивлений I и II.

Запишем уравнение Бернулли для начального 1-1 и конечного 2-2 сечений этого трубопровода, считая, что коэффициенты Кориолиса в этих сечениях одинаковы (α12). После сокращения скоростных напоров получим

,

где z1, z2 координаты центров тяжести соответственно начального и конечного сечений;

p1, p2 давления в соответственно начальном и конечном сечениях трубопровода;

— суммарные потери напора в трубопроводе.

Отсюда потребный напор

, (5.1)

Как видно из полученной формулы, потребный напор складывается из суммарной геометрической высоты Δz = z2 – z1, на которую поднимается жидкость в процессе движения по трубопроводу, пьезометрической высоты в конечном сечении трубопровода и суммы гидравлических потерь напора, возникающих при движении жидкости в нем.

В гидравлике принято под статическим напором трубопровода понимать сумму .

  Рисунок 5.1 – Простой трубопровод: а – расчетная схема; б – характеристики потребного напора при ламинарном режиме течения; в – то же при турбулентном режиме  

Тогда, представляя суммарные потери как степенную функцию от расхода Q, получим

, (5.2)

где т — величина, зависящая от режима течения жидкости в трубопроводе;

К - сопротивление трубопровода.

При ламинарном режиме течения жидкости и линейных местных сопротивлениях (заданы их эквивалентные длины lэкв) суммарные потери

,

где lрасч = l + lэкв — расчетная длина трубопровода.

Следовательно, при ламинарном режиме т = 1, .

При турбулентном течении жидкости

.

Заменяя в этой формуле среднюю скорость жидкости через расход, получим суммарные потери напора

. (5.3)

Тогда при турбулентном режиме , а показатель степени m = 2. При этом следует помнить, что в общем случае коэффициент потерь на трение по длине является также функцией расхода Q.

Поступая аналогично в каждом конкретном случае, после несложных алгебраических преобразований и вычислений можно получить формулу, определяющую аналитическую зависимость потребного напора для данного простого трубопровода от расхода в нем. Примеры таких зависимостей в графическом виде приведены на рисунке 5.1, б, в.

Анализ формул, приведенных выше, показывает, что решение задачи по определению потребного напора Hпотр при известных расходе Q жидкости в трубопроводе и его диаметре d несложно, так как всегда можно провести оценку режима течения жидкости в трубопроводе, сравнивая критическое значение Reкp = 2300 с его фактическим значением, которое для труб круглого сечения может быть вычислено по формуле

. (5.4)

После определения режима течения можно вычислить потери напора, а затем потребный напор по формуле (5.2).

Если же величины Q или d неизвестны, то в большинстве случаев сложно оценить режим течения, а, следовательно, обоснованно выбрать формулы, определяющие потери напора в трубопроводе. В такой ситуации можно рекомендовать использовать либо метод последовательного приближения, обычно требующий достаточно большого объема вычислительной работы, либо графический метод, при применении которого необходимо строить так называемую характеристику потребного напора трубопровода.