ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ

Статор однофазного двигателя имеет однофазную обмотку, которая занимает 2/3 общего числа пазов статора. Ротор - коротко-замкнутый.

При подключении к сети однофазная статорная обмотка создает не вращающийся, а пульсирующий магнитный поток с амплитудой Ф. Этот поток может быть искусственно разложен на два вращающихся потока ФI и ФII, каждый из которых равен Ф/2. Обозначим ФI прямым потоком, а ФII - обратным. Частота вращения каждого потока - n1I=n1II=n1.

Предположим, что ротор двигателя уже вращается в направлении прямого потока. Тогда скольжение двигателя относительно прямого потока ФI равно:

,

а относительно обратного потока:

.

Потоки ФI и ФII наводят в обмотке ротора ЭДС E2I и E2II, которые создают токи I2I и I2II. Известно, что частота тока в обмотке ротора пропорциональна скольжению f2=Sf1. Т.к. SII>SI, то ток, наведенный обратным полем, имеет частоту намного больше частоты, наведенной в обмотке ротора прямым полем f2II>f2I.

Пусть n1=1500 об/мин, n2=1450 об/мин, f1=50 Гц, тогда:

SI =(1500-1450)/1500=0,03 f2I=50×0,03=1,5 Гц

SII=(1500+1450)/1500=1,96 f2II=50×1,96=98 Гц

Нам также известно, что индуктивное сопротивление роторной обмотки x2 зависит от частоты f2:

Поскольку f2I<<f2II, то и сопротивление x2I<<x2II

Переходя к токам I2, которые, как известно, обратно пропорциональны сопротивлениям x2, можно записать: I2I>>I2II.

Вращающие моменты двигателя пропорциональны магнитным потокам статора и токам в обмотке ротора. (М~ФI2).

Исходя из значений токов I2I и I2II и учитывая, что ФIII можно записать:

MI>>MII.

Следовательно, если ротор двигателя уже вращается в сторону прямого потока, то он будет продолжать вращаться в этом направлении. Тормозящее воздействие МII не будет оказывать заметного влияния на работу двигателя.

Вспомним, что мы условно предполагали вращение ротора в сторону прямого потока ФI. А если бы он вращался вначале в сторону обратного потока ФII?

Тогда, проведя аналогичные рассуждения, можно заключить, что ротор будет устойчиво вращаться в сторону обратного потока. Рассмотрим механическую характеристику однофазного двигателя (рис. 5.14.2).

Из характеристики М=f(S) видно, что при пуске, когда S=1, пусковой момент Мп=О. Двигатель при включении его в сеть сам не начнет вращаться. Необходим его сдвиг в ту или иную сторону.

Если сдвинуть точку Мп влево от S=1, то момент будет положительным, если вправо - отрицательным.

Другими словами, направление устойчивого вращения ротора двигателя будет зависеть от направления первоначального импульса.

Проведенный анализ показал, что однофазный двигатель нуждается в принудительном пуске.

Пусковые устройства могут быть механическими (пуск от руки) и электрическими.

Первый способ пуска практически выжил себя, и на его смену пришел второй - электрический.

Для создания необходимого пускового момента однофазный двигатель снабжается дополнительной пусковой обмоткой. Эта обмотка размещается в оставшейся незаполненной 1/3 пазов.

Однофазный двигатель, таким образом, превратился в двухфазный. Двухфазный двигатель обладает вращающимся магнитным полем, если выполнены два обязательных условия.

Первое условие состоит в пространственном сдвиге рабочей и пусковой обмоток на 90 эл. градусов. Такое условие, легко реализуется на заводе-изготовителе.

Второе обязательное условие диктуется сдвигом по фазе тока в пусковой обмотке на 90° относительно тока в рабочей обмотке. Выполнение этого условия связано с включением в пусковую обмотку фазосдвигающего элемента, например, конденсатора (рис. 5.14.3).

После того как ротор двигателя придет во вращение, пусковую обмотку ПО отключают. Делается это с помощью выключателя В. Иногда в бытовой технике отключение пусковой обмотки производится автоматически по ходу разгона двигателя.