Геотермальная энергетика

Развитие геотермальной энергетики в России позволяет в ближайшие годы полностью решить проблему тепло- и электроснабжения больших регионов: Камчатки, Курильских о-вов, Северного Кавказа и отдельных районов Сибири, и практически на всей территории существенно улучшить систему теплоснабжения на основе тепла Земли с применением тепловых насосов.

В России сектор теплоснабжения потребляет более 45 % всей энергии страны, при этом только центральное теплоснабжение будет достигать 33—35 %.

При использовании современных технологий локального теплоснабжения можно за счет тепла Земли сэкономить значительные ресурсы органического топлива (мазута, угля, дизельного топлива).

Практически на всей территории России имеются запасы тепла Земли с температурой 30—40°С (рис. 17.19), а в отдельных районах имеются геотермальные резервуары с температурами до 300°С. Территория России хорошо исследована, и сегодня известны основные ресурсы тепла Земли, которые имеют значительный промышленный потенциал, в том числе и энергетический.

На территории России разведано около 50 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240x103 м3/сут и парогидротерм производительностью более 105x103 м3/сут. На территории страны пробурено более 3000 скважин с целью использования геотермальных ресурсов. Так, например, на Камчатке на геотермальных полях уже пробурено 365 скважин глубиной от 255 до 2300 м. Выявленные геотермальные ресурсы позволяют полностью обеспечить Камчатскую обл. электроэнергией и теплом более чем на 100 лет.

Запасы тепла геотермальных вод Камчатки оцениваются в 5000 МВт.

Чукотка также имеет значительные запасы геотермального тепла на границе с Камчатской обл. Уже открытые здесь запасы тепла Земли могут в настоящее время активно использоваться для энергообеспечения близлежащих городов и поселков.

Курильские о-ва имеют свои богатые запасы тепла Земли, которых достаточно для тепло- и электрообеспечения на 100—200 лет.

На Северном Кавказе хорошо изучены геотермальные месторождения с температурой в резервуаре от 70 до 180°С, находящиеся на глубине от 300 до 5000 м. Здесь много лет используется геотермальная вода для теплоснабжения и горячего водоснабжения. В Дагестане в год добывается более 6 млн м3 геотермальной воды. На Северном Кавказе около 500 тыс. чел. используют геотермальное водоснабжение.

Приморье, Прибайкалье, Западно-Сибирский регион, Магаданская обл. также располагают запасами геотермального тепла, пригодного для широкомасштабного использования в промышленности и сельском хозяйстве.

В настоящее время в зависимости от температуры геотермальные ресурсы широко используются в электроэнергетике и теплофикации, промышленности, сельском хозяйстве, бальнеологии и других отраслях (рис. 17.20).

В 1965—1967 гг. на Камчатке были построены две геотермальные электростанции (ГеоЭС): Паужетская ГеоЭС, которая до сих пор работает, производит самую дешевую электроэнергию на Камчатке, и Паратунская ГеоЭС — первая в мире ГеоЭС с бинарным циклом, которая явилась прототипом почти 400 ГеоЭС, построенных в других странах. Бинарные электрические станции — это двухконтурные станции с использованием в каждом контуре своего рабочего тела. К бинарным также иногда относят одноконтурные станции, которые работают на смеси двух рабочих тел — аммиака и воды.

Верхне-Мутновская ГеоЭС была полностью создана российскими учеными и специалистами, все оборудование было изготовлено в кратчайшие сроки на российских заводах и предприятиях, так как был использован богатый опыт отечественного энергомашиностроения.

В то же время почти вся Камчатка и ряд других регионов России располагают значительными запасами геотермальной воды с температурой более 85°С, позволяющей получать электроэнергию на ГеоЭС с бинарным циклом. Блочные ГеоЭС с бинарным циклом (рис. 17.21) мощностью от 300 кВт до 10 МВт (эл.) позволят обеспечить ряд удаленных поселков Камчатки, Чукотки и Сибири электроэнергией и теплом.

Наибольшего экономического эффекта в энергетике можно достигнуть при замене централизованной системы традиционного теплоснабжения на локальные геотермальные источники тепла. Геотермальное теплоснабжение наиболее выгодно при прямом использовании геотермальной горячей воды, а также при применении тепловых насосов, которые могут эффективно использовать тепло Земли с температурой от 10 до 20°С. Тепловой насос — машина, предназначенная для передачи внутренней энергии от теплоносителя с низкой температурой к теплоносителю с высокой температурой с помощью внешнего воздействия для совершения работы. В основе принципа работы теплового насоса лежит обратный цикл Карно.

Россия — лидер в создании и эксплуатации централизованного теплоснабжения больших городов. Однако в нашей стране слабо развиваются локальные системы теплоснабжения на базе тепловых насосов, которые при затрате 1 кВт электрической мощности позволяют выдать в систему отопления от 3 до 7 кВт тепловой мощности.

Тепловые насосы нашли широкое применение во многих странах мира. Наиболее мощная теплонасосная установка работает в Швеции мощностью 320 МВт (т) и использует тепло воды Балтийского моря. Эффективность применения тепловых насосов определяется во многом соотношением цен на электрическую и тепловую энергию, а также коэффициентом трансформации, обозначающим, во сколько раз больше производится тепловой энергии по сравнению с затраченной электрической (или механической) энергией. Этот коэффициент изменяется в зависимости от температуры охлаждающей воды.

Наибольшего эффекта в организации локального теплоснабжения можно получить с помощью тепловых насосов, используя низкопотенциальные геотермальные источники тепла.

Наряду с ГеоЭС на Мутновском геотермальном поле имеется опыт создания и эксплуатации современных бассейнов и теплиц на геотермальной воде, а поселок Термальный полностью обеспечивается теплом и горячей водой за счет геотермальных ресурсов.