Прямоугольное (ортогональное проецирование) проецирование
Частный случай параллельного проецирования, при котором направление проецирования перпендикулярно плоскости проекций, называется прямоугольным или ортогональным проецированием. Прямоугольной (ортогональной) проекцией точки называют основание перпендикуляра, проведенного из точки на плоскость проекций. Прямоугольная проекция точек А и В показана на рис. 5.
Для определения положения точки в пространстве по ее параллельным проекциям необходимо иметь две параллельные плоскости , полученные при двух направлениях проецирования.
Рис. 5 Рис. 6
Т.к. через точку можно провести только одну прямую, перпендикулярную плоскости, то, очевидно, при ортогональном проецировании для получения двух проекций одной точки необходимо иметь две не параллельные плоскости проекций (рис. 6).
Ортогональное проецирование обладает рядом преимуществ перед центральным и параллельным проецированием. К ним в первую очередь следует отнести:
1. Простоту графических построений для определения ортогональных проекций точек.
2. Возможность при определенных условиях сохранить на проекциях форму и размеры проецируемой фигуры.
Отмеченные преимущества обеспечили широкое применение ортогонального проецирования в технике, в частности, для составления машиностроительных чертежей.
В машиностроении для того чтобы иметь возможность по чертежу судить о форме и размерах изображаемых предметов, при составлении чертежей, как правило, пользуются не двумя, а несколькими плоскостями проекций.
Положение точки в пространстве, а следовательно, и любой геометрической фигуры может быть определено, если будет задана какая-либо координатная система отнесения. Плоскости проекции делят пространство на восемь частей – октантов. Их условно нумеруют римскими цифрами (рис. 7).
Плоскости проекции делят пространство на восемь частей – октантов. Их условно нумеруют римскими цифрами (рис. 7).
Рис. 7 Рис. 8
Наиболее удобной для фиксирования положения геометрической фигуры в пространстве и выявления ее формы по ортогональным проекциям является декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей проекций. В связи с тем, что начертательная геометрия призвана передавать результаты своих теоретических исследований для практического использования, ортогональное проецирование целесообразно рассматривать также в системе трех плоскостей проекций.
Для удобства проецирования в качестве трех плоскостей проекций выбирают три взаимно перпендикулярные плоскости (рис.8). Одну из них принято располагать горизонтально – ее называют горизонтальной плоскостью проекций, другую – вертикально, параллельно плоскости чертежа, ее называют фронтальной плоскостью проекций и третью, перпендикулярную двум имеющимся –ее называют профильной плоскостью проекций. Эти плоскости проекций пересекаются по линиям, называемыми осями проекций.
У нас принята правая система расположения плоскостей проекций. При этом положительными направлениями осей считают: для оси х (пересечение горизонтальной и фронтальной плоскостей проекций) – влево от начала координат, для оси y (пересечение горизонтальной и профильной плоскостей проекций) – в сторону наблюдателя от фронтальной плоскости проекций, для оси z (пересечение фронтальной и профильной плоскостей проекций) – вверх от горизонтальной плоскости проекций, противоположные направление осей считают отрицательными.
Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией – соответственно на фронтальной плоскости проекций и профильной – на профильной плоскости проекций.
Пользоваться этим пространственным макетом для изображения ортогональных проекций геометрических фигур неудобно ввиду его громоздкости, а также из-за того, что на отдельных (горизонтальной и профильной) происходит искажение формы и размеров проецируемой фигуры. Поэтому вместо изображения на чертеже пространственного макета пользуются комплексным чертежом (эпюр Монжа) составленным из трех связанных между собой ортогональных проекций геометрической фигуры.
Преобразование пространственного макета в эпюр осуществляется путем совмещения горизонтальной и профильной плоскостей проекций с фронтальной плоскостью проекции (рис. 7).
Так как плоскости не имеют границ, в совмещенном положении (на эпюре) границы плоскостей не показывают, нет необходимости оставлять надписи, указывающие положение плоскостей проекций (рис. 10).
Перейдя к эпюру утратилась пространственная наглядность. Эпюр дает больше – точность и удобоизмереимость изображений, при простоте построений. Однако, чтобы представить пространственную картину требуется работа воображения.