Криволінійний інтеграл І роду
Нехай на площині Oxy задана неперервна крива AB довжини l. Роздивимось неперервну функцію f(x;y), задану в точках дуги AB. Розіб'ємо криву AB точками M0=A, M1, M2,…, Mn=B на n довільних дуг Mi-1Mi з довжинами відповідно Δli (i=1; 2;…; n). Виберемо на кожній дузі Mi-1Mi довільну точку (xi; yi) і складемо суму
.
Її називають інтегральною сумою для функції f(x;y) по кривій AB.
Нехай — найбільша із довжин дуг поділу. Якщо ( ) існує скінченна границя інтегральних сум, то її називають криволінійним інтегралом від функції f(x;y) по довжині кривої AB, або криволінійним інтегралом І роду від функції f(x;y) по кривій AB і позначають
або .
Таким чином, за означенням
.