Датчик для измерения крутящего момента на валу двигателя
Аналоговый датчик момента
характеристика датчика
Цифровой датчик момента
Метод формирования кода на выходе датчика сост в следующем: самая минимальная длительность получаемого импульса соответствует малому моменту на валу. Необходимо заполнить длительность получаемого им на выходе триггера, короткими импульсами длительность которых в 400 раз меньше самого короткого импульса на выходе триггера, получаемого при очень малом моменте. Это делается с помощью логического элемента «И» и автомобильного мультибратора. С выхода коллектора мультибратора на второй вход логического элемента И поступают короткие импульсы. А на первый вход поступают импульсы от триггера. Число импульсов мультибратора пропорционально моменту на валу. На выходе логического элемента образуются пачки логических импульсов. Счётчик подщитывает количество импульсов на каждый вход. Электронносумирующий счетчик подщитывает количество импульсов на каждой пачке, на основании подсчетов появляется цифровой код соответствующий моменту на валу.
2.2Передаточное отношение стартер-двигатель.стартер с редуктором
Параметром, определяющим рациональное согласование мощностной характеристики электропускового устройства с пусковыми характеристиками ДВС, является передаточное число iдс привода от стартера к двигателю.
Этот параметр оказывает влияние на угол наклона механической характеристики стартера. Для каждого двигателя и заданных условий пуска существуют оптимальные передаточные числа, при которых используются мощностные характеристики пускового устройства. При безредукторной передаче передаточное число iдс может быть не более 16, что ограничивается условиями механической прочности ведущей шестерни стартера.
Рис. 2.20. Зависимость массы активных материалов электродвигателя стартера с номинальной мощностью 1,4 кВт от расчетной номинальной частоты вращения |
Увеличение передаточного числа позволяет уменьшить размеры и соответственно массу электродвигателя стартера, так как эти параметры изменяются обратно пропорционально частоте вращения вала. На рис. 2.20 в качестве примера показана зависимость массы активных материалов та от расчетной номинальной частоты вращения п ротора стартерного электродвигателя мощностью 1,4 кВт. Общая масса стартера тс зависит от его номинальной мощности Рс (рис. 2.21). При этом преимущества стартеров с редуктором проявляются, начиная с мощности примерно 1 кВт.
В конструкциях стартеров с редуктором между ротором электродвигателя и шестерней, сидящей на выходном валу стартера, встраивается редуктор, понижающий частоту вращения в 3...4 раза. При этом частота вращения вала электродвигателя повышена до
15 ООО ... 20 ООО мин"1 в режиме холостого хода. Блок электродвигателя представляет собой механизм с малыми размерами, высокой частотой вращения и низким моментом.
Конструктивно редукторы могут быть выполнены простыми рядными с внешним или внутренним зацеплением (рис. 2.22), а также планетарными. Наиболее перспективным является так называемый планетарный редуктор Джемса (рис. 2.23), применяемый для передачи движения с небольшими замедлениями (5...7). Его достоинствами является симметричность передаваемых усилий, компактность и высокий КПД, превосходящий КПД соответствующих простых редукторов
Передаточное число такого редуктора
iр = 1 + z4/zB,
где zu и zQ - число зубьев соответственно центрального неподвижного колеса 13 (см. рис. 2.23) и ведущей шестерни 10.
Особенностями конструкций стартеров с редукторами являются: малые размеры и масса электродвигателя; уменьшение нагрузки на аккумуляторную батарею при пуске ДВС в связи с применением электродвигателя с малым моментом (малые разрядные токи); повышение возможностей пуска двигателя при низких температурах; снижение выходной мощности при малых нагрузках; более тяжелые условия работы муфты свободного хода, повышенный шум из-за высокой частоты вращения вала электродвигателя и наличия редуктора; тяжелые условия работы щеточно-коллекторного узла электродвигателя в связи с большой скоростью коммутации.
Применение стартеров с редукторами потребовало в значительной степени изменить технологию их изготовления. В частности, для увеличения механической прочности быстровращающихся высокой частоты вращения вала электродвигателя и наличия редуктора; тяжелые условия работы щеточно-коллекторного узла электродвигателя в связи с большой скоростью коммутации.
Рис. 2.23. Стартер с планетарным редуктором и возбуждением от постоянных магнитов: 1 - передняя крышка; 2 - приводной рычаг; 3 - якорь тягового реле; 4 - тяговое реле; 5-коллектор электродвигателя; 6- корпус подшипника; 7- щетка; 8 - постоянные магниты; 9 - якорь; 10 - первичный вал и ведущая шестерня редуктора; 11 - зубчатое колесо-сателлит; 12 - водило; 13 - неподвижное центральное зубчатое колесо с внутренним зацеплением; 14 - муфта свободного хода; 15- шестерня привода |