Тема 3. Фонтанная добыча нефти

 

1. Понятие и условие фонтанирования скважин.

2. Типы фонтанирования скважин.

3. Механизм движения газожидкостной смеси в трубах.

4. Оборудование устья фонтанной скважины.

5. Регулирование и установление технологического режима работы, и исследование скважин при фонтанной эксплуатации.

6. Неполадки при работе фонтанных скважин и их предупреждение.

7. Техника безопасности и противопожарные мероприятия при фонтанной эксплуатации скважин.

 

1. Понятие и условие фонтанирования скважин.

Под фонтанной эксплуатацией понимается такой способ подъема продукции скважины от забоя на дневную поверхность, при котором располагаемая энергия на забое Wзaб больше или равна энергии, расходуемой на преодоление различных сопротивлений Wс по всей длине скважины в процессе подъема, т.е. Wзaб ≥ Wc.

Основными источниками естественного фонтанирования являются потенциальная энергия жидкости Wж и газа Wr, выделяющегося из нефти при давлении, меньшем давления насыщения. Таким образом, естественное фонтанирование осуществляется только за счет природной энергии Wn, которой обладает продукция скважины на забое Wзаб.

Wзаб = Wп = Wж + Wг (3.1)

В зависимости от соотношения этих слагаемых природной энергии, а также от соотношения Рзаб и давления насыщения Рнас можно использовать различные принципиальные схемы оборудования добывающих скважин.

Если разработка ведется при искусственном воздействии на залежь, например, поддержанием пластового давления, то в залежь вводится значительное количество потенциальной энергии с поверхности, которая распределяется между скважинами, и на каждую скважину приходится определенное количество искусственно введенной энергии Wи. В общем случае энергия, которой располагает продукция на забое скважины, такова:

Wзаб = Wп + Wи (3.2)

или

Wзаб = Wж + Wг + Wи (3.3)

Из выражения следует, что при Wи = 0 подъем продукции скважины осуществляется только за счет природной энергии, поэтому такой способ будем называть естественным фонтанированием. Если же Wи > О, то такой способ подъема продукции будем называть искусственным фонтанированием. Если в выражении положить Wи = 0 и Wг = 0, то Wзаб = Wж и такой вид фонтанирования называется артезианским.

Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:

Рзаб = Рг + Ртр + Ру, (3.4)

где Рзаб - давление на забое скважины;

Рг, Ртр, Ру - гидростатическое давление столба жидкости в скважине, рассчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.

 

2. Типы фонтанирования скважин.

Различают два типа фонтанирования скважин:

- фонтанирование жидкости, не содержащей пузырьков газа, - артезианское фонтанирование;

- фонтанирование жидкости, содержащей пузырьки газа, облегчающее фонтанирование, - наиболее распространенный способ фонтанирования.

Артезианский способ встречается при добыче нефти редко. Он возможен при полном отсутствии растворенного газа в нефти и при забойном давлении, превышающем гидростатическое давление столба негазированной жидкости в скважине. При наличии растворенного газа в жидкости, который не выделяется благодаря давлению на устье, превышающему давление насыщения, и при давлении на забое, превышающем сумму двух давлений: гидростатического столба негазированной жидкости и давления на устье скважины.

Поскольку присутствие пузырьков свободного газа в жидкости уменьшает плотность последней и, следовательно, гидростатическое давление такого столба жидкости, то давление на забое скважины, необходимое для фонтанирования газированной жидкости, существенно меньше, чем при артезианском фонтанировании.

Теоретическое описание процесса артезианского фонтанирования практически не отличается от расчета движения однородной жидкости по трубе. Давление на забое скважины Рзаб при фонтанировании определяется уравнением (3.4), в котором гидростатическое давление столба жидкости благодаря постоянству плотности жидкости определяются простым соотношением:

, (3.5)

где ρ - средняя плотность жидкости в скважине;

Н - расстояние по вертикали между забоем (обычно серединой интервала перфорации) и устьем скважины.

Для наклонных скважин

, (3.6)

где L - расстояние от забоя до устья вдоль оси наклонной скважины;

α - средний зенитный угол кривизны скважины.

Для наклонных скважин, имеющих на разных глубинах различный угол кривизны αi, расстояние Н необходимо определять разделением глубины скважины на интервалы и суммированием проекций этих интервалов на вертикальную ось:

, (3.7)

где ΔLi - длина i - го интервала;

αi - угол кривизны i - го интервала;

n - число интервалов, на которое разбивается общая глубина скважины.

При движении жидкости по НКТ она охлаждается и ее плотность немного изменяется. Поэтому необходимо в расчетах принимать среднюю плотность:

, (3.8)

где ρс, ρу - плотность жидкости при термодинамических условиях забоя и устья скважины, соответственно.

При фонтанировании обводненной нефтью плотность жидкости подсчитывается как средневзвешенная:

(3.9)

, (3.10)

где n - доля воды в смеси (обводненность);

ρн, ρв - плотность нефти и воды в условиях забоя (с) и устья (у) соответственно.

Иногда в результате недостаточной скорости восходящего потока жидкости и оседания воды обводненность n вдоль ствола скважины бывает неодинаковой. Например, между забоем и башмаком НКТ в интервале, где жидкость движется по всему сечению обсадной колонны с малой скоростью, обводненность может быть больше. В таких случаях всю расчетную глубину скважины необходимо разбивать на соответствующие интервалы. Заметим, что погрешности в определении гидростатического давления существенно влияют на все результаты расчета, так как оно преобладает в общем балансе давлений и составляет 95 - 98 % от величины Pзаб.

Противодавление на устье скважины Pу определяется ее удаленностью от групповой замерной установки, давлением в этой установке или размером штуцера (местного сопротивления), обычно устанавливаемого на выкидной линии фонтанирующей скважины для регулирования ее дебита. При широко распространенных в настоящее время однотрубных, герметизированных системах нефтегазосбора давления на устье Pу бывает большим, достигая иногда нескольких мегапаскалей.

Потери давления на трение Pтр определяются по обычным формулам трубной гидравлики, а именно:

(3.11)

Заметим, что в формуле (3.11) L - не глубина скважины, а длина НКТ вдоль оси скважины. Лишь в вертикальных скважинах эти величины совпадают, поэтому при наклонных скважинах важно учитывать это различие. Скорость жидкости в НКТ Сж определяется обычно через объемный коэффициент жидкости и ее плотность для средних термодинамических условий в НКТ:

, (3.12)

где Qн, Qв - дебит нефти и воды скважины, приведенный к стандартным условиям;

ρн, ρв - плотности нефти и воды при стандартных условиях;

bн, bв - объемные коэффициенты нефти и воды для средних условий в НКТ;

f - площади сечения НКТ (или обсадной колонны для интервала от забоя до башмака НКТ).

При подсчете потерь на трение необходимо учитывать, что диаметр НКТ d существенно влияет на величину Pтр. Это означает, что при уменьшении диаметра НКТ на 10 %, например, за счет покрытия внутренней поверхности эпоксидными смолами, стеклом или в результате отложения парафина потери на трение возрастут в 1,61 раза.

Величины коэффициента сопротивления λ определяются через число Рейнольдса по соответствующим графикам или аппроксимирующим формулам. Если такие величины, как Сж, d и ρ, необходимые для определения числа Re оцениваются достаточно точно, то для подсчета вязкости жидкости μ, особенно при движении по НКТ обводненной нефти или эмульсии, нет достаточно точных формул. Вязкость обводненной нефти зависит не только от вязкости компонентов (нефти и воды), но и от дисперсности эмульсии. Тем не менее, для оценки этой величины можно рекомендовать следующую приближенную формулу Гатчика и Сабри:

, (3.13)

где μэ - динамическая вязкость эмульсии;

μвс - динамическая вязкость внешней дисперсной среды (для эмульсии типа вода в нефти μвс - вязкость нефти, для эмульсии типа нефть в воде μвс - вязкость воды);

φ - отношение объема внутренней дисперсной фазы к объему внешней.

При пользовании формулой (3.13) следует иметь в виду, что при обводненности нефти 60 - 70 % происходит инверсия эмульсий, т. е. замещение внешней и внутренней фаз. Поэтому формула (3.13) в представленном написании справедлива для эмульсии с содержанием воды, не превышающим указанных пределов. При большем водосодержании в формулу (3.13) вместо μвс необходимо подставить вязкость внешней среды, которой становится в этом случае вода, и вместо μ подставлять объемное отношение нефти к воде.

Коэффициент сопротивления λ зависит от режима течения. Установлено, что при Re < 1200 течение ламинарное, при Re > 2500 - турбулентное и при 1200 < Rе < 2500 - так называемая переходная зона. При ламинарном движении:

(3.14)

При турбулентном движении:

(3.15)

Для переходной зоны имеется много различных аппроксимирующих формул. Достаточно надежные результаты для λ получаются по формуле:

(3.16)

Причем формулу (3.16) можно использовать не только для переходной зоны, так как она рекомендована для 1200 < Re < 50000.

Фонтанирование за счет энергии газа - это наиболее распространенный способ фонтанирования нефтяных скважин. Уже было отмечено, что при артезианском фонтанировании в фонтанных трубах движется негазированная жидкость (нефть), поэтому, чтобы преодолеть гидростатическое давление столба такой жидкости, забойное давление должно быть достаточно высоким.

При фонтанировании за счет энергии газа плотность столба газожидкостной смеси (ГЖС) в фонтанных трубах мала, поэтому гидростатическое давление столба такой смеси будет меньше. Следовательно, и для фонтанирования скважины потребуется меньшее забойное давление. При движении жидкости по НКТ от забоя к устью давление уменьшается, и на некоторой высоте оно становится равным давлению насыщения Рнас, а выше - ниже давления насыщения. В зоне, где Р < Рнас, из нефти выделяется газ, причем этого газа становится тем больше, чем меньше давление, т. е. чем больше разница давлений ΔР = Рнас - Р. Таким образом, нефть при фонтанировании разгазируется в результате выделения из нее растворенного газа, перехода его в свободное состояние и образования ГЖС с плотностью, существенно меньшей плотности чистой нефти. В описанном случае фонтанирование будет происходить при давлении на забое скважины, превышающем давление насыщения (Рзаб > Рнас), и газ будет выделяться на некоторой высоте в НКТ.

Возможен другой случай, когда фонтанирование происходит при давлении на забое скважины ниже давления насыщения (Рзаб < Рнас). При этом на забой скважины вместе с нефтью поступает свободный газ, к которому, по мере подъема нефти по НКТ, добавляются дополнительные порции свободного газа, выделяющегося из нефти при снижении давления. Масса свободного газа, приходящегося на единицу массы жидкости, по мере подъема увеличивается. Объем свободного газа также увеличивается за счет его расширения. В результате газонасыщенность потока возрастает, а его плотность соответственно снижается.

Таким образом, фонтанирование скважины может происходить при давлении на забое Рзаб выше или ниже давления насыщения Рнас.

Сделаем несколько предварительных общих определений. Очевидно, давление на забое фонтанной скважины в любом случае будет равно:

Рзаб = Рб + Р, (3.17)

где Рб - давление у башмака НКТ при фонтанировании скважины с постоянным дебитом;

Р = (Н - L)·ρ·g - гидростатическое давление столба жидкости между башмаком и забоем высотой Н - L, где Н - глубина скважины, L - длина НКТ; ρ - средняя плотность жидкости в этом интервале.

С другой стороны, то же давление на забое Рзаб может быть определено через уровень жидкости в межтрубном пространстве:

Рзаб = Р1 + Р2, (3.18)

где Р1 = hρg - гидростатическое давление столба жидкости в межтрубном пространстве;

Р2 = Рз + ΔР - давление газа, находящегося в межтрубном пространстве, на уровень жидкости, Рз - давление газа в межтрубном пространстве на устье скважины; ΔР - гидростатическое давление столба газа от уровня до устья.

Очевидно:

, (3.19)

где ρг - средняя плотность газа в межтрубном пространстве.

Запишем (3.18) в развернутом виде:

Рзаб = hρg + Рз + (Н – h) ρгg (3.20)

В скважине, фонтанирующей с постоянным дебитом, давление на забое Рзаб должно быть постоянным. Поэтому изменение высоты столба h в затрубном пространстве должно сопровождаться изменением давления на устье Рз так, чтобы сумма слагаемых согласно (3.20) была бы постоянной. Поэтому необходимо, чтобы уменьшение h сопровождалось увеличением давления газа Рз и наоборот.

Фонтанирование за счет энергии газа Рзаб < Рнас (рисунок 3.1, a).

Свободный газ имеется на самом забое. К башмаку фонтанных труб будет двигаться газожидкостная смесь. При работе такой скважины основная масса пузырьков газа будет увлекаться потоком жидкости, и попадать в фонтанные трубы. Однако часть пузырьков, двигающихся непосредственно у стенки обсадной колонны, будет проскальзывать мимо башмака НКТ, и попадать в межтрубное пространство. В межтрубном пространстве выше башмака движения жидкости не происходит. Поэтому пузырьки газа в нем будут всплывать, достигать уровня жидкости и пополнять газовую подушку в межтрубном пространстве.

Рзаб < Рнас Рзаб > Рнас

Рисунок 3.1 - Схема скважин при фонтанировании

а - при давлении на забое меньше давления насыщения (Рзаб < Рнас);

б - при давлении на забое больше давления насыщения (Рзаб > Рнас)

 

Таким образом, при фонтанировании, когда Рзаб < Рнас, создаются условия для непрерывного накопления газа в межтрубном пространстве. Интенсивность этого процесса зависит от многих факторов.

1. От скорости восходящего потока ГЖС, т. е. от дебита скважины. Чем больше дебит, тем меньше газа попадает в межтрубное пространство.

2. От величины зазора между обсадной колонной и фонтанными трубами.

3. От количества и величины газовых пузырьков, что в свою очередь зависит от разницы между давлением насыщения и давлением у башмака.

4. От вязкости жидкости.

Накопление газа в затрубном пространстве приводит к увеличению давления Рз и соответствующему понижению уровня жидкости h на такую величину, чтобы давление на забое Рзаб согласно уравнению (3.20) оставалось бы постоянным. Этот процесс будет продолжаться до тех пор, пока уровень жидкости в межтрубном пространстве не опустится до башмака фонтанных труб. После этого процесс стабилизируется. Непрерывно возрастающее давление на устье межтрубного пространства после достижения максимума стабилизируется. В этом случае, возможно, достаточно точно определить давление у башмака фонтанных труб Рб, а также и давление на забое Рзаб по давлению на устье в межтрубном пространстве Рз, не прибегая к трудоемкому процессу спуска манометра в скважину. Давление Рз замеряется на устье манометром. Тогда давление у башмака будет равно:

, (3.21)

где

- плотность газа.

Здесь ρо - плотность газа при стандартных условиях Ро и То; Тср - средняя температура в затрубном пространстве; z - коэффициент сжимаемости газа для условий Рз и Тср. Второе слагаемое в формуле (3.21) может быть определено несколько точнее по барометрической формуле.

При больших расстояниях между забоем и башмаком НКТ (превышающих 50 - 100 м) в вычисление Рс вносится погрешность за счет недостоверности величины средней плотности ГЖС между башмаком и забоем - Р. В таких случаях величину Р необходимо определять методами, изложенными в теории движения газожидкостных смесей.

Таким образом, в фонтанирующей скважине при условии Рзаб < Рнас уровень жидкости в межтрубном пространстве обязательно должен устанавливаться у башмака НКТ после выхода работы скважины на установившийся режим. Однако это справедливо, если нет утечки газа из обсадной колонны из-за ее недостаточной герметичности или неплотностей в арматуре и колонной головки. При наличии утечек уровень жидкости может стабилизироваться в межтрубном пространстве на некоторой высоте, обусловливая такое давление на устье, при котором утечки газа сравниваются с его поступлением от башмака фонтанных труб.

Фонтанирование за счет энергии газа Рзаб > Рнас(рисунок 3.1, б).

Свободный газ в этом случае не накапливается в затрубном пространстве, так как нет условий для его проскальзывания у башмака фонтанных труб. В самих трубах газ начнет выделяться на некоторой высоте от башмака, где давление станет равным давлению насыщения. Поскольку при работе скважины обновление жидкости в затрубном пространстве не происходит, то не возникают и условия для пополнения газа. Из объема нефти, находящейся в затрубном пространстве, частично выделится растворенный газ, после чего вся система придет в равновесие. Уровень жидкости в этом случае будет находиться на некоторой глубине h в соответствии с выражением (3.20).

Различным положениям уровня будет соответствовать различное давление Pз. В этом случае вследствие неопределенности величины h становится невозможным определение забойного давления Рзаб по величине Рз.

 

3. Механизм движения газожидкостной смеси в трубах.

Подъем жидкости из скважин нефтяных месторождений практически всегда сопровождается выделением газа. Поэтому для понимания процессов подъема жидкости из скважин, умения проектировать установки для подъема и выбирать необходимое оборудование, надо знать законы движения газожидкостных смесей (ГЖС) в трубах. При всех известных способах добычи нефти приходится иметь дело с движением газожидкостных смесей либо на всем пути от забоя до устья, либо на большей части этого пути.

1. Зависимость подачи жидкости от расхода газа

Качественную характеристику процесса движения газожидкостной смеси (ГЖС) в вертикальной трубе легче уяснить из следующего простого опыта (рисунок 3.2).

Представим, что трубка 1 длиною L погружена под уровень жидкости неограниченного водоема на глубину h. К нижнему открытому концу трубки подведена другая трубка 2 для подачи с поверхности сжатого газа.

Рисунок 3.2 - Принципиальная схема газожидкостного подъемника

1, 2 – трубки; 3 – расходомер.

 

На трубке имеется регулятор расхода 3, с помощью которого можно установить желаемый расход газа.

Давление у башмака подъемной трубки 1 будет равно гидростатическому на глубине h - P1 = rgh и, очевидно, не будет изменяться от того, много или мало газа подается к башмаку.

По трубке 2 подается газ, и в трубке 1 создается газожидкостная смесь средней плотности rс, которая поднимается на некоторую высоту H. Поскольку внутренняя полость трубки 1 и наружная область являются сообщающимися сосудами, имеющими на уровне башмака одинаковые давления, то можно написать равенство:

(3.22)

откуда

(3.23)

Плотность смеси в трубке rс зависит от расхода газа V. Чем больше V, тем меньше

rс. Изменяя V, можно регулировать Н. При некотором расходе V = V1 величина Н может достигнуть L. При V<V1 H<L. При V>V1 H>L и наступит перелив жидкости через верхний конец трубки 1.

При дальнейшем увеличении V расход поступающей на поверхность жидкости q увеличится. Однако при непрерывном увеличении V расход жидкости не будет увеличиваться непрерывно, так как под воздействием неизменяющегося перепада давления DР = Р1 - Р21 = const, так как h = const), труба определенной длины L и диаметра d должна пропускать конечное количество жидкости, газа или газожидкостной смеси. Таким образом, при некотором расходе газа V=V2 дебит достигнет максимума q = q max.

Можно представить другой крайний случай, когда к башмаку подъемной трубы подводится так много газа, что при постоянном перепаде давления DР = Р1 - Р будет идти только газ, DР будет расходоваться на преодоление всех сопротивлений, вызванных движением по трубе чистого газа.

Расход этого газа пусть будет V=V3. Если к башмаку подать еще больший расход (V>V3), то излишек газа не сможет пройти через подъемную трубу, так как ее пропускная способность при данных условиях (L, d, DP) равна только V3, и устремится мимо трубы, оттесняя от башмака жидкость. Очевидно, при этом расход жидкости будет равен нулю (q = 0). Таким образом, из этого опыта можно сделать следующий вывод.

1. При V<V1 q = 0 (H < L).

2. При V = V1 q = 0 (H = L) (начало подачи).

3. V1 < V < V2 0 < q < qmax (H > L),

4. При V = V2 q = qmax (точка максимальной подачи).

5. При V2 < V < V 3 qmax > q > 0.

6. При V = V3 q = 0 (точка срыва подачи).

Обычно правая ветвь кривой q(V) (рисунок 3.3) пологая, левая крутая.

 

Рисунок 3.3 - Зависимость подачи q газожидкостного подъемника от расхода газа V

 

Для всех точек кривой постоянным является давление P1, так как погружение h в процессе опыта не изменялось.

2. Зависимость положения кривых q (V) от погружения

Существует понятие - относительное погружение e = h / L. Таким образом, для данной кривой ее параметром будет величина относительного погружения ε.

Поскольку при наших рассуждениях никаких ограничений на величину e не накладывалось, то при любых e, лежащих в пределах 0 < e < 1, вид соответствующих кривых q(V) будет одинаковый. При увеличении e новые кривые q(V) обогнут прежнюю, так как с ростом h потребуется меньший расход газа для наступления перелива. По тем же причинам возрастет qmax, а точка срыва подачи на соответствующих кривых сместится вправо. При уменьшении e все произойдет наоборот (рисунок 3.4).

 

Рисунок 3.4 - Семейство кривых q(V) для газожидкостного подъемника данного диаметра

 

Новые кривые q(V) расположатся внутри прежних и при e = 0 кривая q(V) выродится в точку. Другой предельный случай - e = 1 (h = L, 100% погружения). В этом случае при бесконечно малом расходе газа немедленно произойдет перелив.

Точка начала подачи сместится в начало координат. Кривая q(V) для e = 1 начнется в начале координат и обогнет все семейство кривых. Таким образом, каждый газожидкостный подъемник характеризуется семейством кривых q(V), каждая из которых будет иметь свой параметр e.

3. Зависимость положения кривых q(V) от диаметра трубы

В наших рассуждениях никаких ограничений на диаметр подъемной трубы и на ее длину не накладывается. Поэтому аналогичное семейство кривых q(V) должно существовать для подъемников любого диаметра и любой длины.

Однако возникает вопрос, как располагать новое семейство кривых для трубы диаметром d2 > d1 по отношению к прежним кривым.

Увеличение диаметра потребует большого расхода газа, так как объем жидкости, который необходимо разгазировать для достижения данной величины rс, при прочих равных условиях (h = const, L = const) возрастает пропорционально d2.

Пропускная способность трубы по жидкости, газу или газожидкостной смеси (ГЖС) также возрастет.

Поэтому для увеличенного диаметра будет существовать также семейство кривых q(V), все точки которого будут смещены вправо, в сторону увеличенных объемов, кроме одной точки, совпадающей с началом координат для кривой q(V) при e = 1. (рисунок 3.5)

 

Рисунок 3.5 - Семейство кривых q(V) для двух газожидкостных подъемников различных диаметров

 

В каждом из этих семейств и любых других, кривые q(V) при значениях e, близких к единице и к нулю, не имеют практического значения, так как они либо неосуществимы (e = 0), либо бессмысленны (e = 1), и введены в рассуждения только для понимания физики процессов, происходящих при движении ГЖС в трубах.

4. К. п. д. процесса движения ГЖС

На каждой кривой q(V) имеется еще одна характерная и очень важная точка, точка так называемой оптимальной производительности, соответствующая наибольшему кпд. Если проанализировать произвольную кривую q(V), для которой e = const, то для нее будут справедливы следующие рассуждения.

Из определения понятия к. п. д. следует, что:

(3.24)

Полезная работа заключается в поднятии жидкости с расходом q на высоту L - h, так что:

(3.25)

Затраченная работа - это работа газа, расход которого, приведенный к стандартным условиям, равен V. Полагая для простоты, что процесс расширения газа изотермический, на основании законов термодинамики идеальных газов можем записать:

, (3.26)

где С - константа.

Поэтому кпд будет иметь максимальное значение в той точке, в которой отношение q / V максимально. Но q / V = tg φ, так как q - ордината, V - абсцисса, φ - угол наклона прямой, проведенной из начала координат через данную точку (q, V). Только для касательной tgφ будет иметь максимальное значение, так как только для нее угол φ максимален. Поэтому в точке касания прямой, проведенной из начала координат с кривой q(V), получаются такой дебит q и такой расход газа V, при которых кпд процесса будет наибольшим. Расход q при максимальном кпд называют оптимальным дебитом qoпт.

Таким образом, для любой кривой q(V), имеющей ε = const, оптимальный расход жидкости определится как точка касания касательной, проведенной из начала координат.

5. Понятие об удельном расходе газа

Удельным расходом газа называют отношение:

(3.27)

Из определения следует, что для точек начала и срыва подачи, когда q = 0, а V > 0, удельный расход R обращается в бесконечность. Для режима оптимальной подачи, когда кпд максимален, R минимально.

Это очевидно, так как при максимальном кпд должно расходоваться минимально возможное количество газа на подъем единицы объема жидкости. При режиме максимальной подачи (qmax) η < ηmax.

Поэтому и удельный расход газа R будет при этом режиме больше оптимального. Величина R может быть получена для любой точки кривой q(V) путем деления абсциссы на ординату данной точки (рисунок 3.6).

 

Рисунок 3.6 - Зависимость удельного расхода газа R от общего расхода газа V для данной кривой q (V)

 

6. Зависимость оптимальной и максимальной подач от относительного погружения

Для любого семейства кривых q(V), построенного для данного диаметра труб, можно найти qmax и qопт и проследить их зависимость от изменения относительного погружения ε. С увеличением ε величины qmax также увеличиваются по криволинейному закону.

Что касается qопт, то последние, во-первых, всегда остаются меньше соответствующих qmax и, во-вторых, сначала увеличиваются с ростом ε, а затем при 0,5 < ε < 1 начинают уменьшаться.

В частности, при ε = 1 кривая q(V) выходит из начала координат.

Поэтому касательная, проведенная из начала координат, будет иметь точку соприкосновения с кривой q(V) в начале координат.

Это означает для q(V) при ε = 1 qопт = 0. Таким образом, величины qопт должны сначала увеличиваться, затем уменьшаться и при ε = 1 обращаться в нуль (рисунок 3.7).

 

Рисунок 3.7 - Зависимость оптимальной qопт и максимальной qmax подачи от относительного нагружения ε

 

Наибольшая величина qопт достигается при ε = 0,5 - 0,6. Отсюда можно сделать важный для практики вывод: для достижения наибольшей эффективности работы газожидкостного подъемника необходимо осуществить погружение подъемной трубы под уровень жидкости на 50 - 60% (ε = 0,5 - 0,6) от всей длины трубы L.

Однако эта рекомендация в реальных условиях не всегда может быть выполнена из-за низкого динамического уровня или из-за ограниченного давления газа, используемого для этой цели.

7. Структура потока ГЖС в вертикальной трубе

В зависимости от физических свойств жидкости и характера ввода газа в поток могут возникать различные структуры движения ГЖС в трубе, которые существенным образом влияют на энергетические показатели подъема жидкости.

В фонтанных скважинах на участке НКТ, где давление меньше давления насыщения, выделяющийся из нефти свободный газ образует тонкодисперсную структуру, называемую эмульсионной. Мелкие газовые пузырьки более или менее равномерно пронизывают массу нефти, образуя практически однородную смесь газа и жидкости. Вследствие своей малости (доли мм) и большой плотности газовые пузырьки обладают малой архимедовой силой. Поэтому их скорость всплытия относительно жидкости пренебрежимо мала и в расчетах может не учитываться.

Это происходит до тех пор, пока в результате уменьшения давления при движении смеси вверх по трубе газовые пузырьки, расширяясь, увеличивают объемное газосодержание потока до 20 - 25%. При дальнейшем уменьшении давления и поступлении из нефти новых количеств газа пузырьки, сливаясь, образуют глобулы больших размеров, измеряемые в диаметре несколькими сантиметрами. Скорость всплытия таких глобул в результате действия архимедовой силы становится большой, достигая нескольких десятков сантиметров в секунду. Это ухудшает энергетические показатели процесса подъема.

Такая структура называется четочной.

При больших расходах газа возникает стержневая структура, при которой газ с распыленными в нем каплями жидкости движется непрерывным потоком, увлекая за собой по стенкам трубы волнистую пленку жидкости.

При стержневой структуре движения скорость газа по отношению к жидкости достигает нескольких метров в секунду.

Между эмульсионной, четочной и стержневой структурами не существует резких границ перехода и тем не менее некоторые исследователи выделяют и переходные структуры от эмульсионной к четочной, и от четочной к стержневой (рисунок 3.8).

 

Рисунок 3.8 - Структуры газожидкостного потока: а - эмульсионная; б - четочная;

в – стержневая

 

На возникновение той или иной структуры существенное влияние оказывает вязкость нефти, а также наличие в ней различных ПАВ.

 

4. Оборудование устья фонтанной скважины.

На устье фонтанной скважины устанавливается оборудования, состоящее из колонной головки, фонтанной арматуры и манифольдов.

Колонная головка предназначена для обвязки устья скважины с целью герметизации межтрубных пространств, а также для подвески обсадных колонн и установки фонтанной арматуры. Существуют одно-, двух-, трех-, четырех- и пятиколонные головки.

Требования, предъявляемые к конструкциям колонных головок, следующие: надежная герметизация межтрубных пространств; возможность контроля за давлениями во всех межтрубных пространствах; быстрое и надежное закрепление подвески обсадных колонн; возможность крепления к одной колонной головке различных обсадных колонн, т. е. универсальность; быстрый и удобный монтаж; минимально возможная высота.

Колонная головка в период эксплуатации скважины остается на устье и, как правило, не ремонтируется. Поэтому к ее конструкции и качеству изготовления предъявляются высокие требования. Выпускаются колонные головки на 14; 21; 35; 50 и 70 МПа рабочего давления. В некоторых случаях (на газовых скважинах) применяются колонные головки, рассчитанные на давление до 150 МПа.

После бурения с колонной головки демонтируют превенторы и устанавливают фонтанную арматуру.

Корпус головки 1 (рисунок 3.9) навинчивается на верхний резьбовой конец кондуктора.

Рисунок 3.9 - Колонная головка

1 – корпус; 2, 7 – муфта; 3 – кольца; 4, 6 – фланец; 5 – полукольца; 8 – манометр; 9 – боковой отвод с краном высокого давления; 10 – обсадная колонна.

Обсадная колонна 10 вворачивается в специальную муфту 7. Герметичность соединения корпуса головки 1 и муфты 7 достигается муфтой 2 и двумя кольцами 3 из специальной нефтестойкой резины. Плотность посадки достигается за счет прижатия муфты полукольцами 5 и фланцем 4, который болтами притягивается к фланцу корпуса. Муфта 7 заканчивается фланцем 6 для присоединения к нему фонтанной арматуры. Для опрессовки колонной головки и контроля давления в межтрубном пространстве предусмотрен боковой отвод с краном высокого давления 9 и манометром 8.

Фонтанная арматура предназначена для подвески одной или двух колонн фонтанных труб; для герметизации и контроля пространства между фонтанными трубами и обсадной колонной; для проведения технологических операций при освоении, эксплуатации и ремонте скважины; для направления продукции скважины в выкидную линию на замерную установку; для регулирования режима работы скважины и осуществления глубинных исследований.

Фонтанная арматура подвергается действию высоких температур и давлений. Однако по своим эксплуатационным характеристикам (дебит, давление, температура, газовый фактор и др.) фонтанные скважины бывают различными. Поэтому возникает необходимость иметь фонтанные арматуры, рассчитанные на различные условия работы.

Фонтанные арматуры различаются по конструктивным и прочностным признакам: по рабочему давлению - от 7 до 105 МПа; по размерам проходного сечения ствола - от 50 до 100 мм; по конструкции фонтанной ёлки - крестовые и тройниковые; по числу спускаемых в скважину рядов труб - однорядные и двухрядные; по типу запорных устройств - с задвижками или с кранами.

Для охвата всех возможных условий в фонтанных скважинах по давлению приняты следующие стандарты: арматуры на 7, 14, 21, 35, 70 и 105 МПа рабочего давления, причем арматура на 7, 14, 21 и 35 МПа испытывается на двойное рабочее давление, а арматура на 70 и 105 МПа - на полуторакратное давление. Собственно фонтанная арматура состоит из двух элементов: трубной головки и фонтанной ёлки.

Трубная головка предназначена для подвески фонтанных труб. Обычно она представляет собой крестовину с двумя боковыми отводами с установленной на ней переходной катушкой, в которую вворачивается верхний резьбовой конец фонтанных труб. При применении двух рядов труб устанавливаются две крестовины с переходными катушками. На нижней катушке подвешивается первый ряд труб (большого диаметра), а на верхней катушке - второй ряд труб (меньшего диаметра). На верхнем фланце катушки укрепляется собственно фонтанная ёлка.

Трубная головка подвергается давлению затрубного газа, которое может быть больше, чем давление в фонтанной ёлке. Поэтому трубная головка рассчитывается и испытывается на давление примерно в 1,5 раза большее, чем фонтанная ёлка. Это объясняется тем, что в межтрубном пространстве, которое герметизирует трубная головка, может скопиться чистый газ, и поэтому давление может достигнуть пластового.

Фонтанные ёлки по конструкции делятся на крестовые и тройниковые. Характерным узлом крестовой арматуры является крестовина 6 (рисунок 3.10) с двумя боковыми отводами, каждый из которых может быть рабочим, а второй запасным. Для тройниковой фонтанной ёлки (рисунок 3.11) характерным узлом являются тройники 7, к которым присоединяются выкидные линии - верхняя и нижняя.

Причем рабочим выкидом всегда должна быть верхняя линия, а нижняя - запасной. Это продиктовано безопасностью работы и возможностью предотвращения открытого фонтанирования.

Тройниковые арматуры, как правило, применяются в скважинах, дающих вместе с нефтью абразивный материал - песок, ил. При разъедании песком верхнего тройника скважина может быть переведена на работу через нижний отвод.

При этом промежуточная (между отводами) задвижка или кран закрывается; и верхний тройник, и отвод могут быть отремонтированы.

При применении в этих условиях крестовой арматуры разъедание крестовины приводит к необходимости перекрытия скважины центральной задвижкой для замены крестовины.

Рисунок 3.10 - Фонтанная крестовая арматура (4АФК-50-700) высокого давления (70 МПа) для однорядного подъемника

1 - вентиль, 2 - задвижка, 3 - крестовина, 4 - катушка для подвески НКТ, 5 - штуцер, 6 - крестовины ёлки, 7 - буфер, 8 - патрубок для подвески НКТ, 9 – катушка.

 

Рисунок 3.11 - Фонтанная тройниковая арматура кранового типа для подвески двух рядов НКТ (2АФТ-60 x 40 х КрЛ-125)

1 - тройник; 2 - патрубок для подвески второго ряда НКТ; 3 - патрубок для подвески первого ряда НКТ.

 

Однако крестовые арматуры более компактны, высота их меньше, обслуживание, которое заключается в снятии показаний манометров, смене штуцеров и осуществляется с мостков без лестниц. Тройниковые арматуры имеют большую высоту и требуют для обслуживания специальных вспомогательных сооружений.

Фонтанные арматуры шифруются следующим образом:

АФТ-65Кр-140, что означает: арматура фонтанная, тройниковая с проходным сечением 65 мм, крановая на 14 МПа рабочего давления.

АФК-50-210 - арматура фонтанная крестовая диаметром 50 мм на рабочее давление 21 МПа.

Масса фонтанной арматуры достигает 3 т, высота 4 м, ширина до 3,3 м.

Штуцеры являются элементом фонтанной елки и предназначены для регулирования режима работы фонтанной скважины и ее дебита. Штуцеры устанавливаются на обеих выкидных линиях арматуры и подразделяются на нерегулируемые и регулируемые. Более просты и надежны нерегулируемые штуцеры. Они незаменимы в случаях, когда из скважины поступает песок или другой абразивный материал. Существует много конструкций нерегулируемых штуцеров, которые часто выполняются в виде коротких конических втулок из легированной стали или из металлокерамического материала с центральным каналом заданного диаметра. По мере износа штуцера установленный режим работы скважины нарушается, и штуцер необходимо менять. Для этого работу скважины переводят временно на запасной отвод, на котором установлен штуцер заданного диаметра, и одновременно меняют изношенный штуцер в основном рабочем отводе. В связи с этим предложено много конструкций, так называемых быстросменных штуцеров (рисунок 3.12).

Рисунок 3.12 - Штуцер быстросменный для фонтанной арматуры высокого давления (ЩБА-50-700)

1 - корпус, 2 - тарельчатая пружина, 3 - боковое седло, 4 - обойма, 5 - крышка, 6 - нажимная гайка, 7 - прокладка, 8 - гайка боковая. 9 - штуцерная металлокерамическая втулка.

 

Простейший штуцер выполняется в виде диафрагмы с отверстием заданного диаметра, зажимаемой между двумя фланцами выкидной линии. Применяются регулируемые штуцеры, в которых проходное сечение плавно изменяют перемещением конусного штока в седле из твердого материала. Перемещение осуществляется вращением маховика, на штоке которого имеется указатель, показывающий эквивалентный диаметр проходного кольцевого сечения регулируемого штуцера.

Такие штуцеры сложнее, дороже, имеют сальниковые уплотнения и применяются обычно в скважинах, не продуцирующих песок. В любом штуцере происходит поглощение энергии газожидкостной струи и снижение давления от давления на буфере до давления в отводящей линии системы нефтегазосбора. Если разность давлений велика, применяют несколько последовательно соединенных штуцеров, в каждом из которых частично снижается давление.Манифольд предназначен для обвязки фонтанной арматуры с трубопроводом, подающим продукцию скважины на замерную установку. Применяются различные схемы таких обвязок в зависимости от местных условий и технологии эксплуатации. Поэтому эти схемы не стандартизованы, но их узлы комплектуются из элементов заводского изготовления. Простейшая схема манифольда крестовой фонтанной арматуры (рисунок 3.13) не предусматривает обвязку выкидов межтрубных пространств и предполагает наличие только одной выкидной линии, соединяющей скважину с трапной или замерной установкой.

 

Рисунок 3.13 - Схема обвязки крестовой фонтанной арматуры

В некоторых случаях при интенсивном отложении парафина предусматривают две выкидные линии и манифольд, допускающий работу через любой из двух выкидов.

 

На рисунке 3.13 показаны стандартизованные узлы заводской сборки. Они очерчены четырехугольниками и помечены номером (№ 1, №2, №3). Схема предусматривает два регулируемых штуцера 1, два вентиля для отбора проб жидкости и газа 2, запорные устройства 3 для сброса продукции на факел или земляной амбар, тройники 4, крестовики 5, предохранительный клапан 6, фланцевые соединения 7. Основные узлы манифольда унифицированы с узлами и деталями фонтанной арматуры. Манифольды на концах имеют фланцы для присоединения труб диаметром 80 мм. Выкидной шлейф соединяет манифольд арматуры с групповой замерной установкой (ГЗУ) промысловой системы нефтегазосбора, где автоматически замеряются дебиты скважин. К ГЗУ подключается группа скважин (до 24), дебит которых измеряется поочередно по определенной программе.

 

5. Регулирование и установление технологического режима работы, и исследование скважин при фонтанной эксплуатации.

Как правило, на начальных этапах разработки фонтанные скважины и особенно высокодебитные определяют возможности нефтедобывающего предприятия. Поэтому их исследованию, регулированию и наблюдению за их работой уделяется повышенное внимание. Кроме того, фонтанное оборудование позволяет сравнительно просто проводить глубинные исследования, отбор глубинных проб, снятие профилей притока и прочие. Для установления обоснованного режима эксплуатации фонтанной скважины важно знать результаты ее работы на различных опытных режимах. Режимы работы фонтанной скважины изменяют сменой штуцера, а точнее диаметра его проходного отверстия. При этом необходимо выдержать скважину на новом режиме некоторое время, прежде чем проводить какое-либо измерение.

Это время необходимо, чтобы пласт и скважина перешли на установившийся режим после возмущения, вносимого в их работу сменой штуцера и изменением в связи с этим ее дебита и забойного давления. Продолжительность перехода скважины на установившийся режим различна и зависит от гидропроводности и пьезопроводности пласта, а также от относительного изменения дебита.

Признаками установившегося режима скважин являются постоянство ее дебита и показаний манометров, присоединенных к буферу скважины и к межтрубному пространству. Обычно это время измеряется несколькими десятками часов.

Для построения регулировочных кривых и индикаторной линии необходимо, по крайней мере, четыре смены режима работы скважины.

После выхода на установившийся режим работы через лубрикатор на забой скважины спускают глубинный манометр или другие приборы, а на поверхности измеряют с возможной точностью дебит, обводненность продукции, содержание песка и твердой взвеси в продукции скважины, газовый фактор или просто дебит газа, показания буферного и межтрубного манометра и отмечают вообще характер работы скважины: наличие пульсации, ее ритмичность и амплитуду, вибрацию арматуры и манифольдов. По полученным данным строят так называемые регулировочные кривые, т.е. зависимости измеренных показателей от диаметра штуцера (рисунок 3.14).

Регулировочные кривые служат одним из оснований для установления технологической нормы добычи из данной скважины и режима ее постоянной работы, например:

- недопущение забойного давления Рзаб ниже давления насыщения Рнас или некоторой его доли Рзаб > 0,75 · Рнас;

- установление режима, соответствующего минимальному газовому фактору или его значению, не превышающему определенную величину;

 

Рисунок 3.14 - Регулировочные кривые фонтанной скважины

d - диаметр штуцера; 1 - забойное давление, МПа; 2 - газовый фактор, м33 ; 3 - дебит скважины, м3/сутки; 4 - депрессия, МПа; 5 - содержание песка в жидкости, кг/м3 ; 6 - содержание воды в продукции скважины, %.

 

- установление режима, соответствующего недопущению резкого увеличения количества выносимого песка для предотвращения образования каверны в пласте за фильтром скважины;

- установление режима, соответствующего недопущению резкого увеличения процентного содержания воды в продукции скважины;

- недопущение на забое скважины такого давления, при котором может произойти смятие обсадной колонны;

- недопущение режима, при котором давление на буфере или в межтрубном пространстве достигнет опасных значений с точки зрения прочности и надежности работы арматуры и поверхностного оборудования вообще;

- недопущение режима, при котором давление на буфере скважины может стать ниже давления в выкидном манифольде системы нефтегазосбора;

- недопущение такого режима работы скважины, при котором могут возникать пульсации, приводящие к срыву непрерывного процесса фонтанирования;

- установление такого режима, при котором активным процессом дренирования охватывается наибольшая толщина пласта или наибольшее число продуктивных пропластков. Это устанавливается с помощью снятия профилей притока глубинными дебитомерами на разных режимах работы скважины.

После того как режим работы данной скважины установлен и обоснован, за его дальнейшим поддержанием тщательно наблюдают.

Особенно тщательное наблюдение устанавливается за высокодебитными фонтанными скважинами. При периодических осмотрах арматуры фиксируются нарушения герметичности в соединениях, опасные вибрации элементов оборудования, показания манометров. О нарушении нормальной работы скважин судят по аномальным изменениям буферного и затрубного давления, изменению дебита нефти и обводненности, количеству песка и прочие.

Например, падение буферного давления при одновременном повышении межтрубного может указать на опасные пределы отложения парафина или минеральных солей на внутренних стенках НКТ. Одновременное снижение буферного и межтрубного давления свидетельствует об образовании на забое скважины песчаной пробки или накоплении тяжелой минерализованной пластовой воды в промежутке между забоем и башмаком НКТ. Малая скорость восходящего потока в этом промежутке может при определенных условиях привести к увеличению давления на забое. Падение давления на буфере при одновременном увеличении дебита указывает на разъедание штуцера и необходимость его замены. Засорение штуцера или отложение парафина в манифольде и в выкидном шлейфе при одновременном уменьшении дебита приводит к росту буферного и межтрубного давления.

 

6. Неполадки при работе фонтанных скважин и их предупреждение.

Многообразие условий работы фонтанных скважин на различных нефтяных месторождениях предопределяет и многообразные причины осложнений в их работе. Регулировочные кривые позволяют выделить основные факторы, влияющие на эффективность работы фонтанных скважин, и учесть их в процессе эксплуатации.

Вместе с тем существует несколько причин осложнений, которые проявляются на значительном количестве разрабатываемых месторождений.

К числу таких осложнений относятся:

— отложения в подъемном оборудовании или выкидных линиях, а также в ПЗС асфальтенов, смол, парафинов и церезинов;

— образование песчаных пробок, как на забое скважины, так и в подъемнике;

— отложения солей в различных элементах системы;

— пульсации в работе фонтанной скважины;

— открытое (нерегулируемое) фонтанирование при повреждении устьевой арматуры или за счет образования грифонов.

Парафиноотложение

Нефть, состоящая из смеси как легких, так и тяжелых углеводородов, при пластовых условиях находится, как правило, в термодинамическом равновесии. При изменении термобарических условий в призабойной зоне и в самой скважине, связанных с понижением давления и температуры, нарушается фазовое равновесие, и из смеси углеводородов выделяются как газообразные, так и твердые компоненты.

Важнейшей характеристикой образования твердой фазы является температура кристаллизации парафина, характеризующая появление в смеси углеводородов первых микрокристаллов парафина.

При снижении давления свободный газ, выделяющийся из нефти, понижает ее растворяющую способность и образует границы раздела, которые провоцируют образование твердой фазы в виде микрокристаллов парафина и церезина, а также микроагрегатов асфальтенов и смол. Образовавшиеся микрокристаллы и микроагрегаты твердой фазы могут оставаться во взвешенном состоянии и выноситься потоком смеси. В противном случае микрокристаллы парафина и церезина, а также микроагрегаты асфальтенов и смол слипаются между собой, образуя сгустки твердой фазы, прилипающие к внутренней поверхности шероховатых насосно-компрессорных труб, особенно в муфтовых соединениях. Со временем этот процесс развивается, приводя к отложению парафина и снижению живого сечения подъемника с соответствующим снижением дебита скважины. Экспериментально установлено, что глубина начала отложений парафина совпадает с глубиной начала выделения газа.

Далее под термином «парафин» будем понимать твердые компоненты нефти, формирующие отложения. Характерные профили отложений парафина внутри подъемника приведены на рисунке 3.15.

Механизм и характер формирования отложений парафина достаточно сложны и зависят от совокупности следующих характеристик: давления насыщения в подъемнике, газонасыщенности нефти (газовый фактор), температурного режима работы скважины, содержания парафина в нефти, температуры кристаллизации парафина, давления на устье скважины, дебита скважины, обводненности продукции, состояния внутренней поверхности подъемника (его шероховатость), типа этой поверхности, характера работы скважины (работа с постоянным дебитом или в пульсирующем режиме) и др.

 

Рисунок 3.15 - Типичные профили отложений парафина внутри подъемника

а — с постоянным увеличением отложений к устью скважины; б — с частичным срывом отложений потоком смеси к устью скважины; в — с полным срывом отложений к устью скважины.

 

Совершенно очевидно, что отложения парафина в подъемнике приводят к нарушению нормальной работы скважины: снижению ее дебита и коэффициента полезного действия процесса подъема.

Существуют два принципиальных подхода к борьбе с этим нежелательным явлением:

1. Предотвращение отложений парафина.

2. Различные методы удаления отлагающегося парафина.

Первый подход является предпочтительным и базируется на создании условий в процессе работы скважины, исключающих формирование отложений парафина или облегчающих их срыв с внутренней поверхности подъемника.

Данный подход включает следующие методы: снижение шероховатости внутренней поверхности НКТ путем нанесения на нее стекла, эмали, эпоксидной смолы или специальных лаков; использование специальных химических реагентов, называемых ингибиторами парафиноотложений. Сущность такого метода заключается не только в гидрофилизации внутренней поверхности подъемника за счет адсорбции на ней химических реагентов, но и в адсорбции этих реагентов на образовавшихся кристаллах парафина и формировании на них тонкой гидрофильной пленки, препятствующей росту кристаллов парафина, их слипанию с образованием сгустков твердой фазы и последующим их отложением на стенках НКТ. Сегодня известно определенное количество ингибиторов парафиноотложений на базе как водорастворимых, так и нефтерастворимых ПАВ.

Второй подход является широко распространенным и делится на несколько методов:

1. Механические — использование различных по конструкции и форме скребков, спускаемых в подъемник либо на проволоке с помощью специальных автоматизированных лебедок, устанавливаемых на устье скважины, либо так называемых автоматических летающих скребков. Конструктивно скребок устроен таким образом, что при спуске полукруглые по форме пластинчатые ножи сложены, и скребок свободно спускается в НКТ. При подъеме ножи раскрываются, их диаметр становится равным внутреннему диаметру НКТ, и они срезают отложившийся парафин, который потоком продукции выносится за пределы устья скважины.

2. Тепловые — прогрев колонны НКТ перегретым паром, закачиваемым в скважину с помощью специальной паропередвижной установки. Такой процесс называется пропариванием НКТ. Часто используют и прокачку горячей нефти. В настоящее время используются и специальные греющие кабели, спускаемые внутрь НКТ.

При подаче на кабель напряжения он разогревается, а отложившийся парафин расплавляется и выносится потоком продукции за пределы устья.

3. Химические — использование различных растворителей парафиновых отложений, закачиваемых в скважину.

Образование песчаных пробок

Как правило, эти проблемы связаны либо с фильтрацией в рыхлых слабосцементированных коллекторах, либо с недопустимым снижением забойного давления и разрушением даже хорошо сцементированных терригенных коллекторов. В обоих случаях в процессе эксплуатации на забое скважины может образовываться песчаная пробка. С гидродинамической точки зрения ее образование связано с недостаточной скоростью восходящего потока продукции в интервале «забой—башмак фонтанного лифта». Песчинки, поступающие из призабойной зоны, в данном случае осаждаются, формируя на забое песчаную пробку. С течением времени размеры и плотность пробки возрастают, что приводит к резкому снижению дебита скважины вплоть до ее остановки.

Предотвратить образование песчаной пробки можно использованием специальных хвостовиков, которые представляют собой насосно-компрессорные трубы меньшего, чем подъемник, диаметра и спускаются до нижних перфорационных отверстий. Скорость движения продукции в хвостовике должна быть большей, чем скорость осаждения песчинок. В случае же образования песчаной пробки средством их разрушения и выноса является промывка с использованием гидромониторных насадок. Эффективными являются и сконструированные для этих целей струйные насосы. Эксплуатация пескообразующих скважин, как правило, требует периодических чисток.

Солеотложение

Разработка нефтяных месторождений на современном этапе характеризуется необходимостью извлечения огромного количества попутных вод, которые имеют различное происхождение, различный химический состав и т.д. Основной причиной солеотложения является пересыщение вод неорганическими солями. Причины пересыщения делятся на две группы:

— гидрогеохимические условия продуктивных горизонтов — вещественный состав и физические свойства пород-коллекторов, термобарические условия, химический состав и минерализация пластовых вод;

— состав вод, закачиваемых в пласт с целью поддержания пластового давления, и геолого-промысловые условия разработки.

Геохимические исследования показывают, что независимо от состава закачиваемых вод для поддержания пластового давления последние насыщаются сульфатами и карбонатами под влиянием гидрогеохимических условий продуктивных горизонтов. Образующиеся при этом новые по составу воды, с одной стороны, химически несовместимы с пластовыми водами и при смешении с ними дают осадки, с другой — пересыщаются и способствуют осадконакоплению при термобарических и гидродинамических условиях, имеющих место в добывающих скважинах и депрессионных зонах.

В нефтегазоносных провинциях, где в осадочной толще отсутствуют соленосные отложения и минерализация вод невысока, в составе солей, выпадающих в нефтепромысловом оборудовании, преобладают карбонаты кальция. Присутствие соленосных толщ в разрезе месторождения, как правило, способствует высокой минерализации пластовых вод и обуславливает выпадение таких осадков, основными компонентами которых являются сульфат бария или сульфат кальция, а иногда их смесь.

Отмеченное позволяет с большой точностью прогнозировать состав солеотложения, выпадающего в нефтепромысловом оборудовании и в коллекторах нефтяных месторождений той или иной нефтегазоносной провинции.

Несовместимость пластовой воды с закачиваемой также может служить причиной пересыщения попутно-добываемых вод. Многочисленные экспериментальные исследования показали, что количество выпадающих при смешении вод осадков зависит от соотношения объемов пластовой и закачиваемой воды, достигая максимума при их соотношении ~ 0,8. Одной из причин солеотложения могут служить водорастворимые компоненты нефти, в частности, нафтеновые кислоты и их соли. Предполагается, что вследствие смешения воды с нефтью и турбулизации потока в процессе подъема водорастворимые компоненты нефти переходят в воду и служат причиной солеотложения. Известны и другие причины образования солей.

Механизм образования солеотложений достаточно сложен и представляется совокупностью таких процессов, как пересыщение попутно-добываемых вод, зародышеобразование, рост кристаллов и перекристаллизация.

Как и при парафиноотложении, предотвращение отложений солей является наилучшей гарантией безаварийной эксплуатации скважин. В этих целях используют соответствующие ингибиторы солеотложений, закачиваемые в призабойную зону скважины. При этом реагент адсорбируется, а затем в процессе эксплуатации скважины десорбируется, смешивается с продукцией, чем предотвращаются солеотложения. К современным ингибиторам солеотложений предъявляются требования не только высокой ингибирующей способности, но и быстрой и наиболее полной адсорбции на поверхности породы при закачке и медленной, но в то же время полной десорбции в процессе эксплуатации скважин. Подбор ингибитора солеотложений с учетом его адсорбционно-десорбционнной способности позволяет обеспечить рациональный вынос реагента из ПЗС и увеличить время и эффективность предотвращения образования солеотложений.

Основные методы борьбы с уже отложившимися солями базируются на использовании различных химических растворителей (как правило, кислотных растворов), с помощью которых производят промывки; в результате — отложения солей растворяются, а продукты реакции удаляются из скважины.

Пульсации

Как уже рассмотрено выше, пульсации в работе фонтанных скважин являются нежелательными, т.к. вызывают нерациональный расход энергии, снижают кпд подъема продукции, а зачастую приводят к прекращению фонтанирования, т.к. скважина начинает работать в периодическом режиме. Самым реальным и действенным путем предотвращения явления пульсации является создание таких условий работы фонтанной скважины, при которых давление у башмака больше или равно давлению насыщения, а коэффициент естественной сепарации свободного газа у башмака равен нулю При технологической невозможности эксплуатации фонтанных скважин на таком режиме эффективной является установка на расчетной глубине подъемника пускового клапана, который периодически перепускает газ из затрубного пространства в НКТ, не допуская отжима уровня жидкости в затрубном пространстве до башмака подъемника.

Открытое фонтанирование

Такой вид фонтанирования относится к аварийным ситуациям и в настоящее время является достаточно редким. Для исключения о