Th2. Второй критерий
Для того, чтобы функциональная последовательность (1) равномерно сходилась к предельной функции на множестве M необходимо и достаточно, чтобы
(8)
□
Необходимость. Пусть выполняется условие (6), покажем, что тогда выполняется (8).
Возьмем произвольное. По нему найдем N из выполнения условия (6).
Если теперь , то для всех , тогда . В силу произвольности это означает выполнение (8).
Достаточность. Пусть выполняется условие (8). Возьмем - произвольное, тогда для этого найдем N из выполнения условия (8): т.е. такое, что для выполняется , тогда, тем более , то есть выполняется условие равномерной сходимости функциональной последовательности (6).
■
I Исследуем функциональную последовательность на равномерную сходимость , , .
1. Найдем предельную функцию .
, следовательно .
2. Найдем Исследуем на max, функцию , производная - точка max, , , - максимальное значение функции.
3. Найдем =
=0.
Ответ: исходная функциональная последовательность сходится к равномерно.