Переход от передаточной функции к схеме

 

 

Представим передаточную функцию проектируемого ФНЧ четвёртого порядка в виде произведения передаточных функций двух активных ФНЧ второго порядка, т.е. в виде

 

,

 

где – коэффициент передачи на постоянном токе;

– частота полюса (частота, на которой фазовый сдвиг равен -90 );

– добротность фильтра (отношение коэффициента усиления на частоте к коэффициенту усиления в полосе пропускания).

Этот переход справедлив, так как общий порядок последовательно соединенных активных фильтров будет равен сумме порядков отдельно взятых фильтров.

Общий коэффициент передачи фильтра (K0 = 4.375) будет определятся произведением коэффициентов передачи отдельных фильтров (K1, K2).

Разложив передаточную функцию на квадратичные сомножители, получим:

 

 

В этом выражении , или

. (2.5.1)

 

Нетрудно заметить, что частоты полюсов и добротности передаточных функций отличаются.

Для первой передаточной функции:

частота полюса ;

добротность .

Для второй передаточной функции:

частота полюса ;

добротность .

Для того чтобы к операционным усилителям в каждом каскаде предъявлялись примерно равные требования по частотным свойствам, целесообразно общий коэффициент передачи всего фильтра распределить между каждым из каскадов обратно пропорционально добротности соответствующих каскадов, а характерную частоту (частоту единичного усиления ОУ) выбрать максимальную среди всех каскадов.

Так как в данном случае ФНЧ состоит из двух каскадов, то указанное выше условие можно записать в виде:

 

 

или . (2.5.2)

 

Подставляя выражение (2.5.2) в (2.5.1), получаем:

 

;

откуда ;

.

Проверим правильность расчёта коэффициентов передачи. Общий коэффициент передачи фильтра в разах будет определяться произведением коэффициентов отдельных фильтров. Переведём коэффициент из дБ в разы:

 

.

, т.е. расчёты верны.

 

Запишем передаточную характеристику с учётом расcчитанных выше величин ( ):

 

.