Векторное произведение двух векторов
Векторным произведением вектора а на вектор b называется третий вектор, обозначаемый символом [а,b] и удовлетворяющий следующим условиям:
1. , где - угол между векторами а и b;
2. Вектор [а,b] перпендикулярен каждому из векторов а и b;
Из условия 1 следует, что модуль векторного произведения [а,b] равен площади S параллелограмма, построенного на векторах а и b (рис.), т.е.
Пусть векторы а и b коллинеарны, т.е. =0 или , тогда следовательно,
Векторное произведение двух векторов обладает свойствами:
1) антиперестановочности множителей
2) сочетательности относительно скалярного множителя
3) распределительности относительно сложения
Вопрос о выражении векторного произведения через координаты перемножаемых векторов решает следующая теорема.
Теорема
Векторное произведение [а,b] двух векторов
выражается формулой
Следствие 1.
Площадь параллелограмма, построенного на векторах а и b, вычисляется по формуле
Следствие 2.
Площадь треугольника АВС определяется формулой