VIII. Кратные интегралы.

42. Задачи, приводящие к понятию кратного интеграла. Двойные и тройные интегралы, их основные свойства. Представление об инте­гралах любой кратности.

43. Вычисление двойных и тройных интегралов в декартовых коор­динатах.

44. Замена переменных в кратных интегралах. Переход от декартовых координат к полярным, цилиндрическим и сферическим коорди­натам.

45. Применение кратных интегралов для вычисления объемов и площадей, для решения задач механики и физики.

 

IX. Криволинейные и поверхностные интегралы.

 

46. Задачи, приводящие к криволинейным интегралам. Определе­ние криволинейных интегралов первого и второго рода, их основные свойства и вычисление. Геометрические и механические приложения. Связь между криволинейными интегралами первого и второго рода. Формула Грина.

47. Площадь поверхности. Определение поверхностных интегралов. Их свойства и вычисления.

 

Л и т е р а т у р а:

 

 

1. Пискунов П. С. Дифференциальное и интегральное исчисление. Т 1,2. М., Наука, 1973.

2. Бермант А.Ф. Краткий курс математического анализа. М., Наука, 1973.

3. Ефимов Н.В. Краткий курс аналитической геометрии. М., Наука, 1972.

4. Гмурман В.Е. Теория вероятностей и математическая статистика. М., Высшая школа, 1977

5. Лихолетов И.И. Высшая математика, теория вероятностей и математическая статистика.

Минск, Высшая школа, 1976.

6. Лихолетов И.И. Руководство к решению задач по высшей математике. Минск, Высшая школа, 1976.

7. Данко П.Е. Высшая математика в упражнениях и задачах . Часть I, II. М., Высшая школа, 1974.

8. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике.